Sensitivity to spatial and temporal modulations of first-order and second-order motion
This study characterises the spatiotemporal “window of visibility” for first-order motion (luminance-modulated noise) and three varieties of second-order motion (contrast-modulated, polarity-modulated and spatial length-modulated noise). Direction-identification thresholds (minimum modulation depth...
Gespeichert in:
Veröffentlicht in: | Vision research (Oxford) 2006-02, Vol.46 (3), p.324-335 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study characterises the spatiotemporal “window of visibility” for first-order motion (luminance-modulated noise) and three varieties of second-order motion (contrast-modulated, polarity-modulated and spatial length-modulated noise). Direction-identification thresholds (minimum modulation depth producing 79.4% correct) were measured for each motion pattern (acuity permitting) over a five octave range of spatial and temporal frequencies (0.5–16
c/deg and 0.5–16
Hz respectively). Thresholds were converted into modulation sensitivity (1/threshold). For first-order motion patterns, sensitivity functions were generally bandpass. However, for second-order motion patterns, functions were predominantly lowpass in nature. In particular, the functions corresponding to contrast-modulated and polarity-modulated noise were virtually identical in terms of shape and sensitivity. However, sensitivity to modulations of spatial length was extremely poor and more lowpass, suggesting that additional strategies, perhaps a feature-based system, may be required for encoding motion of images of this type. |
---|---|
ISSN: | 0042-6989 1878-5646 |
DOI: | 10.1016/j.visres.2005.03.002 |