Towards real-time community detection in large networks

The recent boom of large-scale online social networks (OSNs) both enables and necessitates the use of parallelizable and scalable computational techniques for their analysis. We examine the problem of real-time community detection and a recently proposed linear time- O(m) on a network with m edges-l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2009-06, Vol.79 (6 Pt 2), p.066107-066107, Article 066107
Hauptverfasser: Leung, Ian X Y, Hui, Pan, Liò, Pietro, Crowcroft, Jon
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The recent boom of large-scale online social networks (OSNs) both enables and necessitates the use of parallelizable and scalable computational techniques for their analysis. We examine the problem of real-time community detection and a recently proposed linear time- O(m) on a network with m edges-label propagation, or "epidemic" community detection algorithm. We identify characteristics and drawbacks of the algorithm and extend it by incorporating different heuristics to facilitate reliable and multifunctional real-time community detection. With limited computational resources, we employ the algorithm on OSN data with 1 x 10(6) nodes and about 58 x 10(6) directed edges. Experiments and benchmarks reveal that the extended algorithm is not only faster but its community detection accuracy compares favorably over popular modularity-gain optimization algorithms known to suffer from their resolution limits.
ISSN:1539-3755
1550-2376
DOI:10.1103/physreve.79.066107