Noise-controlled signal transmission in a multithread semiconductor neuron
We report on stochastic effects in a new class of semiconductor structures that accurately imitate the electrical activity of biological neurons. In these devices, electrons and holes play the role of K+ and Na+ ions that give the action potentials in real neurons. The structure propagates and delay...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2009-06, Vol.102 (22), p.226802-226802, Article 226802 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report on stochastic effects in a new class of semiconductor structures that accurately imitate the electrical activity of biological neurons. In these devices, electrons and holes play the role of K+ and Na+ ions that give the action potentials in real neurons. The structure propagates and delays electrical pulses via a web of spatially distributed transmission lines. We study the transmission of a periodic signal through a noisy semiconductor neuron. Using experimental data and a theoretical model we demonstrate that depending on the noise level and the amplitude of the useful signal, transmission is enhanced by a variety of nonlinear phenomena, such as stochastic resonance, coherence resonance, and stochastic synchronization. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.102.226802 |