Structure-activity relationships of pregabalin and analogues that target the alpha(2)-delta protein
Pregabalin exhibits robust activity in preclinical assays indicative of potential antiepileptic, anxiolytic, and antihyperalgesic clinical efficacy. It binds with high affinity to the alpha(2)-delta subunit of voltage-gated calcium channels and is a substrate of the system L neutral amino acid trans...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2005-04, Vol.48 (7), p.2294-2307 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pregabalin exhibits robust activity in preclinical assays indicative of potential antiepileptic, anxiolytic, and antihyperalgesic clinical efficacy. It binds with high affinity to the alpha(2)-delta subunit of voltage-gated calcium channels and is a substrate of the system L neutral amino acid transporter. A series of pregabalin analogues were prepared and evaluated for their alpha(2)-delta binding affinity as demonstrated by their ability to inhibit binding of [(3)H]gabapentin to pig brain membranes and for their potency to inhibit the uptake of [(3)H]leucine into CHO cells, a measure of their ability to compete with the endogenous substrate at the system L transporter. Compounds were also assessed in vivo for their ability to promote anxiolytic, analgesic, and anticonvulsant actions. These studies suggest that distinct structure activity relationships exist for alpha(2)-delta binding and system L transport inhibition. However, both interactions appear to play an important role in the in vivo profile of these compounds. |
---|---|
ISSN: | 0022-2623 |
DOI: | 10.1021/jm049762l |