Mycophenolic acid-treated human dendritic cells have a mature migratory phenotype and inhibit allogeneic responses via direct and indirect pathways
Immature dendritic cells (DCs) can induce T-cell hyporesponsiveness, thus interfering with the process of DC maturation in a pro-inflammatory context, may therefore provide a novel approach to inducing allograft tolerance. We have studied the effects of mycophenolic acid (MPA), an immunosuppressive...
Gespeichert in:
Veröffentlicht in: | International immunology 2005-04, Vol.17 (4), p.351-363 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Immature dendritic cells (DCs) can induce T-cell hyporesponsiveness, thus interfering with the process of DC maturation in a pro-inflammatory context, may therefore provide a novel approach to inducing allograft tolerance. We have studied the effects of mycophenolic acid (MPA), an immunosuppressive agent currently used in transplantation, using an in vitro model of a mixed human DC/alloreactive CD4+ T lymphocyte culture. DCs differentiated from monocytes were exposed to MPA during maturation. MPA treatment affected the maturation of DCs, and this was reflected both in the impairment of the up-regulation of co-stimulatory molecule expression and the maintained endocytic capacity. However, MPA-DCs exhibited a distinctive microscopic morphology and secreted IL-10 and so could no longer be regarded as immature DC. Moreover, MPA-DCs had a mature phenotype for chemokine receptor expression, exhibiting down-regulation of CCR5 and up-regulation of CCR7. Interestingly, the abilities of the MPA-DCs to induce CD4+ T-cell proliferation in response to alloantigens was impaired not only via direct but also via indirect pathways. The maintenance of endocytosis and the inhibition of syngeneic T-cell activation suggest that these cells could have a potential role to avoid chronic rejection. All these characteristics suggest that MPA-DCs may be used in cell therapy to induce allograft tolerance. |
---|---|
ISSN: | 0953-8178 1460-2377 |
DOI: | 10.1093/intimm/dxh215 |