Acidosis during reoxygenation has an early detrimental effect on neuronal metabolic activity

We recently showed that acidosis is protective during hypoxia and detrimental during reoxygenation. We hypothesized that the detrimental effect of acidosis during reoxygenation was due to a negative effect on mitochondrial function. Human postmitotic NT2-N neurons were exposed to 3 h of hypoxia and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pediatric research 2005-04, Vol.57 (4), p.488-493
Hauptverfasser: Frøyland, Elisabeth, Wibrand, Flemming, Almaas, Runar, Dalen, Ingvild, Lindstad, Julie K, Rootwelt, Terje
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We recently showed that acidosis is protective during hypoxia and detrimental during reoxygenation. We hypothesized that the detrimental effect of acidosis during reoxygenation was due to a negative effect on mitochondrial function. Human postmitotic NT2-N neurons were exposed to 3 h of hypoxia and glucose deprivation and then reoxygenated for 0, 1, 4, 9, or 21 h. The detrimental effect of acidotic reoxygenation on metabolic activity was evident already after 1 h of reoxygenation, when MTT [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] reduction (percentage of normoxic controls) was significantly higher in cells reoxygenated with neutral compared with acidotic medium both after acidotic hypoxia (83+/-26% versus 67+/-27%, p=0.006) and after neutral hypoxia (51+/-12% versus 41+/-7%, p=0.005). Hypoxanthine, a marker of cellular energy failure, increased more with acidotic compared with neutral reoxygenation both after acidotic hypoxia (after 21 h: 7.7+/-2.7 versus 3.1+/-1.9 microM, p
ISSN:0031-3998
1530-0447
DOI:10.1203/01.PDR.0000155946.82230.2E