Functional brain mapping of ictal activity in gelastic epilepsy associated with hypothalamic hamartoma: A case report
Summary Hypothalamic hamartomas (HHs) have been demonstrated as the cause of gelastic epilepsy, both by intracranial electrodes and functional imaging. The neocortex becomes secondarily involved, through poorly characterized propagation pathways. The detailed dynamics of seizure spread have not yet...
Gespeichert in:
Veröffentlicht in: | Epilepsia (Copenhagen) 2009-06, Vol.50 (6), p.1624-1631 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Hypothalamic hamartomas (HHs) have been demonstrated as the cause of gelastic epilepsy, both by intracranial electrodes and functional imaging. The neocortex becomes secondarily involved, through poorly characterized propagation pathways. The detailed dynamics of seizure spread have not yet been demonstrated, owing to the limited spatial–temporal resolution of available functional mapping. We studied a patient with epilepsy associated with HH and gelastic epilepsy. Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) of several seizure events were obtained, with blood oxygen level dependent (BOLD) activation of the hamartoma, and left hemisphere hypothalamus, hippocampus, parietal–occipital area, cingulate gyrus, and dorsal–lateral frontal area. Integration of regional BOLD kinetics and EEG power dynamics strongly suggests propagation of the epileptic activity from the HH through the left fornix to the temporal lobe, and later through the cingulate fasciculus to the left frontal lobe. The EEG/fMRI method has the spatial–temporal resolution to study the dynamics of seizure activity, with detailed demonstration of origin and propagation pathways. |
---|---|
ISSN: | 0013-9580 1528-1167 |
DOI: | 10.1111/j.1528-1167.2008.01810.x |