Intraneuronal Abeta, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer's disease

We have developed models of Alzheimer's disease in Drosophila melanogaster by expressing the Abeta peptides that accumulate in human disease. Expression of wild-type and Arctic mutant (Glu22Gly) Abeta(1-42) peptides in Drosophila neural tissue results in intracellular Abeta accumulation followe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2005, Vol.132 (1), p.123-135
Hauptverfasser: Crowther, D C, Kinghorn, K J, Miranda, E, Page, R, Curry, J A, Duthie, F A I, Gubb, D C, Lomas, D A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have developed models of Alzheimer's disease in Drosophila melanogaster by expressing the Abeta peptides that accumulate in human disease. Expression of wild-type and Arctic mutant (Glu22Gly) Abeta(1-42) peptides in Drosophila neural tissue results in intracellular Abeta accumulation followed by non-amyloid aggregates that resemble diffuse plaques. These histological changes are associated with progressive locomotor deficits and vacuolation of the brain and premature death of the flies. The severity of the neurodegeneration is proportional to the propensity of the expressed Abeta peptide to form oligomers. The fly phenotype is rescued by treatment with Congo Red that reduces Abeta aggregation in vitro. Our model demonstrates that intracellular accumulation and non-amyloid aggregates of Abeta are sufficient to cause the neurodegeneration of Alzheimer's disease. Moreover it provides a platform to dissect the pathways of neurodegeneration in Alzheimer's disease and to develop novel therapeutic interventions.
ISSN:0306-4522