A continuous flow mass spectrometry technique of argon isotope measurement for K/Ar geochronology

A new method for the measurement of argon isotope composition in a continuous flow of helium for potassium/argon geochronology is described. Extraction of argon from geological samples in multiple‐sample holders was carried out in a chamber by heating with a continuous Nd‐YAG laser. The extracted an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rapid communications in mass spectrometry 2009-08, Vol.23 (16), p.2403-2410
Hauptverfasser: Ignatiev, Alexander V., Velivetskaya, Tatiana A., Budnitskiy, Sergey Y.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new method for the measurement of argon isotope composition in a continuous flow of helium for potassium/argon geochronology is described. Extraction of argon from geological samples in multiple‐sample holders was carried out in a chamber by heating with a continuous Nd‐YAG laser. The extracted and pre‐concentrated argon is passed through a chromatographic capillary column in a flow of helium. Argon is separated from possible contaminants in the column and is injected through an open split into the ion source of an isotope ratio mass spectrometer. Measurement of the 36Ar, 38Ar and 40Ar isotopes was carried out in dynamic mode, using a triple‐collector ion detector. These experiments have shown that continuous flow mass spectrometry can be used for the analysis of radiogenic argon in picogram quantities with an accuracy that is satisfactory for the solution of many geochronological problems. The method of argon isotope measurement in a continuous flow of helium is an alternative to the measurement of argon isotopes in the static mode. The sensitivity and accuracy of argon measurement by this method are comparable with those provided by the classical static method. The measurement of argon isotopes in a continuous flow of helium is simpler and more reliable than measurement in the static mode. Copyright © 2009 John Wiley & Sons, Ltd.
ISSN:0951-4198
1097-0231
DOI:10.1002/rcm.4017