Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding

We describe biochemical and structural studies of the isolated cystic fibrosis transmembrane conductance regulator (CFTR) protein. Using electron cryomicroscopy, low resolution three-dimensional structures have been obtained for the non-phosphorylated protein in the absence of nucleotide and for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural biology 2009-09, Vol.167 (3), p.242-251
Hauptverfasser: Zhang, Liang, Aleksandrov, Luba A., Zhao, Zhefeng, Birtley, James R., Riordan, John R., Ford, Robert C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe biochemical and structural studies of the isolated cystic fibrosis transmembrane conductance regulator (CFTR) protein. Using electron cryomicroscopy, low resolution three-dimensional structures have been obtained for the non-phosphorylated protein in the absence of nucleotide and for the phosphorylated protein with ATP. In the latter state, the cytosolic nucleotide-binding domains move closer together, forming a more compact packing arrangement. Associated with this is a reorganization within the cylindrical transmembrane domains, consistent with a shift from an inward-facing to outward-facing configuration. A region of density in the non-phosphorylated protein that extends from the bottom of the cytosolic regions up to the transmembrane domains is hypothesised to represent the unique regulatory region of CFTR. These data offer insights into the architecture of this ATP-binding cassette protein, and shed light on the global motions associated with nucleotide binding and priming of the chloride channel via phosphorylation of the regulatory region.
ISSN:1047-8477
1095-8657
DOI:10.1016/j.jsb.2009.06.004