Synthesis, Characterization, and Pharmacokinetic Studies of PEGylated Glucagon-like Peptide-1
Glucagon-like peptide-1-(7−36) (GLP-1) is a hormone derived from the proglucagon molecule, which is considered a highly desirable antidiabetic agent mainly due to its unique glucose-dependent stimulation of insulin secretion profiles. However, the development of a GLP-1-based pharmaceutical agent ha...
Gespeichert in:
Veröffentlicht in: | Bioconjugate chemistry 2005-03, Vol.16 (2), p.377-382 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glucagon-like peptide-1-(7−36) (GLP-1) is a hormone derived from the proglucagon molecule, which is considered a highly desirable antidiabetic agent mainly due to its unique glucose-dependent stimulation of insulin secretion profiles. However, the development of a GLP-1-based pharmaceutical agent has a severe limitation due to its very short half-life in plasma, being primarily degraded by dipeptidyl peptidase IV (DPP-IV) enzyme. To overcome this limitation, in this article we propose a novel and potent DPP-IV-resistant form of a poly(ethylene glycol)-conjugated GLP-1 preparation and its pharmacokinetic evaluation in rats. Two series of mono-PEGylated GLP-1, (i) N-terminally modified PEG2k-Nter-GLP-1 and (ii) isomers of Lys26, Lys34 modified PEG2k-Lys-GLP-1, were prepared by using mPEG-aldehyde and mPEG-succinimidyl propionate, respectively. To determine the optimized condition for PEGylation, the reactions were monitored at different pH buffer and time intervals by RP-HPLC and MALDI-TOF-MS. The in vitro insulinotropic effect of PEG2k-Lys-GLP-1 showed comparable biological activity with native GLP-1 (P = 0.11) in stimulating insulin secretion in isolated rat pancreatic islet and was significantly more potent than the PEG2k-Nter-GLP-1 (P < 0.05) that showed a marked reduced potency. Furthermore, PEG2k-Lys-GLP-1 was clearly resistant to purified DPP-IV in buffer with 50-fold increased half-life compared to unmodified GLP-1. When PEG2k-Lys-GLP-1 was administered intravenously and subcutaneously into rats, PEGylation improved the half-life, which resulted in substantial improvement of the mean plasma residence time as a 16-fold increase for iv and a 3.2-fold increase for sc. These preliminary results suggest a site specifically mono-PEGylated GLP-1 greatly improved the pharmacological profiles; thus, we anticipated that it could serve as potential candidate as an antidiabetic agent for the treatment of non-insulin-dependent diabetes patients. |
---|---|
ISSN: | 1043-1802 1520-4812 |
DOI: | 10.1021/bc049735+ |