Microstructure and mechanical behavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedical applications

The microstructure and mechanical behavior of simple product geometries produced by layered manufacturing using the electron beam melting (EBM) process and the selective laser melting (SLM) process are compared with those characteristic of conventional wrought and cast products of Ti–6Al–4V. Microst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2009, Vol.2 (1), p.20-32
Hauptverfasser: Murr, L.E., Quinones, S.A., Gaytan, S.M., Lopez, M.I., Rodela, A., Martinez, E.Y., Hernandez, D.H., Martinez, E., Medina, F., Wicker, R.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The microstructure and mechanical behavior of simple product geometries produced by layered manufacturing using the electron beam melting (EBM) process and the selective laser melting (SLM) process are compared with those characteristic of conventional wrought and cast products of Ti–6Al–4V. Microstructures are characterized utilizing optical metallography (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and included α (hcp), β (bcc) and α ′ (hcp) martensite phase regimes which give rise to hardness variations ranging from HRC 37 to 57 and tensile strengths ranging from 0.9 to 1.45 GPa. The advantages and disadvantages of layered manufacturing utilizing initial powders in custom building of biomedical components by EBM and SLM in contrast to conventional manufacturing from Ti–6Al–4V wrought bar stock are discussed.
ISSN:1751-6161
1878-0180
DOI:10.1016/j.jmbbm.2008.05.004