Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment

Two finite concentric spherical regions were considered as the tissue model for magnetic fluid hyperthermia treatment. The inner sphere represents the diseased tissue containing magnetic particles that generate heat when an alternating magnetic field is applied. The outer sphere represents the healt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hyperthermia 2005-02, Vol.21 (1), p.57-75
Hauptverfasser: Bagaria, H. G., Johnson, D. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Two finite concentric spherical regions were considered as the tissue model for magnetic fluid hyperthermia treatment. The inner sphere represents the diseased tissue containing magnetic particles that generate heat when an alternating magnetic field is applied. The outer sphere represents the healthy tissue. Blood perfusion effects are included in both the regions. Analytical and numerical solutions of the one-dimensional bioheat transfer equation were obtained with constant and spatially varying heat generation in the inner sphere. The numerical solution was found to be in good agreement with the analytical solution. In an ideal hyperthermia treatment, all the diseased tissues should be selectively heated without affecting any healthy tissue. The present work optimized the magnetic particle concentration in an attempt to achieve the ideal hyperthermia conditions. It was found that, for a fixed amount of magnetic particles, optimizing the magnetic particle distribution in the diseased tissue can significantly enhance the therapeutic temperature levels in the diseased tissue while maintaining the same level of heating in the healthy tissue.
ISSN:0265-6736
1464-5157
DOI:10.1080/02656730410001726956