ATX-3, CDC-48 and UBXN-5: A new trimolecular complex in Caenorhabditis elegans

Ataxin-3 is the protein involved in Machado–Joseph disease, a neurodegenerative disorder caused by a polyglutamine expansion. Ataxin-3 binds ubiquitylated proteins and acts as a deubiquitylating enzyme in vitro. It was previously proposed that ataxin-3, along with the VCP/p97 protein, escorts ubiqui...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2009-09, Vol.386 (4), p.575-581
Hauptverfasser: Rodrigues, Ana-João, Neves-Carvalho, Andreia, Ferro, Anabela, Rokka, Anne, Corthals, Garry, Logarinho, Elsa, Maciel, Patrícia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ataxin-3 is the protein involved in Machado–Joseph disease, a neurodegenerative disorder caused by a polyglutamine expansion. Ataxin-3 binds ubiquitylated proteins and acts as a deubiquitylating enzyme in vitro. It was previously proposed that ataxin-3, along with the VCP/p97 protein, escorts ubiquitylated substrates for proteasomal degradation, although other players of this escort complex were not identified yet. In this work, we show that the Caenorhabditis elegans ataxin-3 protein (ATX-3) interacts with both VCP/p97 worm homologs, CDC-48.1 and CDC-48.2 and we map the interaction domains. We describe a motility defect in both ATX-3 and CDC-48.1 mutants and, in addition, we identify a new protein interactor, UBXN-5, potentially an adaptor of the CDC-48-ATX-3 escort complex. CDC-48 binds to both ATX-3 and UBXN-5 in a non-competitive manner, suggesting the formation of a trimolecular complex. Both CDC-48 and ATX-3, but not UBXN-5, were able to bind K-48 polyubiquitin chains, the standard signal for proteasomal degradation. Additionally, we describe several common interactors of ATX-3 and UBXN-5, some of which can be in vivo targets of this complex.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2009.06.092