Exogenous glucose oxidation is reduced with carbohydrate feeding during exercise after starvation

Abstract Lean healthy individuals are characterized by the ability to rapidly adapt metabolism to acute changes in substrate availability and metabolic rate. However, in glucose-intolerance/insulin-resistant conditions, such as that induced by starvation, the flexibility of tissues to rapidly respon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolism, clinical and experimental clinical and experimental, 2009-08, Vol.58 (8), p.1161-1169
Hauptverfasser: Rowlands, David S, Johnson, Nathan A, Thomson, Jasmine A, Chapman, Phil, Stannard, Stephen R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Lean healthy individuals are characterized by the ability to rapidly adapt metabolism to acute changes in substrate availability and metabolic rate. However, in glucose-intolerance/insulin-resistant conditions, such as that induced by starvation, the flexibility of tissues to rapidly respond to change in substrate availability is diminished. We asked whether the conundrum of increased glucose demand by the contracting skeletal muscle during prolonged exercise and the glucose intolerance of starvation would result in the obstruction of oxidative disposal of ingested13 C-labeled glucose during exercise. Seven lean, healthy, physically active individuals (2 women, 5 men) completed a randomized crossover study comparing the effects of the normal-fed condition vs a 67-hour water-only fast on the metabolic response to carbohydrate ingestion during 80 minutes of exercise at 56% of maximum oxygen uptake. Compared with the normal condition, fasting resulted in a large overall increase in the rate of fat oxidation (mean effect, 71%; 95% confidence limit, ±22%) and moderate reductions in both exogenous (−54%, ±10%) and endogenous (−40%, ±19%) glucose oxidation rates during exercise. Over the course of exercise, fat oxidation was impermeable to change in the fasting condition, but increased moderately (33%, ±19%) in the normal condition. These changes were associated with a large increase in plasma free fatty-acid concentration (120%, ±64%) and a moderate increase in blood lactate concentration (58%, ±50%). In contrast, large reductions in resting blood glucose (−21%, ±14%) and moderate reductions in plasma insulin concentrations (−47%, ±26%) were observed in the fast condition; but this effect was reversed for glucose (30%, ± 24%) and negated for insulin by the end of exercise. To conclude, a 67-hour fast leads to an impermeable increase in fat oxidation, suppression of both exogenous and endogenous carbohydrate oxidation, and a metabolic response consistent with resistance to contraction-induced exogenous glucose uptake and oxidation.
ISSN:0026-0495
1532-8600
DOI:10.1016/j.metabol.2009.03.016