Cloning and expression of equine insulin-like growth factor binding proteins in normal equine tendon

To define a portion of the nucleotide sequences of each of the 6 insulin-like growth factor (IGF) binding proteins (IGFBPs) in horses and describe patterns of messenger RNA (mRNA) and protein expression for IGFBPs in normal equine tendons. 7 horses. Total RNA was extracted from the tensile region of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of veterinary research 2005-02, Vol.66 (2), p.300-306
Hauptverfasser: Dahlgren, L.A, Nixon, A.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To define a portion of the nucleotide sequences of each of the 6 insulin-like growth factor (IGF) binding proteins (IGFBPs) in horses and describe patterns of messenger RNA (mRNA) and protein expression for IGFBPs in normal equine tendons. 7 horses. Total RNA was extracted from the tensile region of normal superficial digital flexor tendons and reverse transcribed into complimentary DNA (cDNA). The cDNA was amplified via PCR, and products representing portions of each IGFBP were cloned and sequenced. Nucleotide sequences were used to deduce the amino acid sequences, and both nucleotide and predicted amino acid sequences were compared with those published for bovine, human, mouse, and ovine IGFBPs. Gene expression was quantitated by real-time PCR assay, and protein expression was evaluated by western ligand blot (WLB). Clones ranged in size from 262 to 522 bp and had high degrees of sequence homology with other mammalian species. Sequence homology was highest between bovine and equine IGFBPs (86% to 95%) and amongst the IGFBP-5 sequences from the various species (92% to 95%). Message for IGFBP-2 to -6, but not IGFBP-1, was expressed in normal tendon. Protein expression for IGFBP-2, -3, and -4 was detected byWLB in normal tendon and markedly increased in damaged tendons. Results provide basic information and tools needed for further characterization of the role of the IGF system in tendon healing and may lead to the ability to potentiate the response of healing tendon to exogenous IGF-I via concurrent manipulation of IGFBPs.
ISSN:0002-9645
1943-5681
DOI:10.2460/ajvr.2005.66.300