Direct Visualization of RecBCD Movement Reveals Cotranslocation of the RecD Motor after χ Recognition

In Escherichia coli, χ (5′-GCTGGTGG-3′) is a recombination hotspot recognized by the RecBCD enzyme. Recognition of χ reduces both nuclease activity and translocation speed of RecBCD and activates RecA-loading ability. RecBCD has two motor subunits, RecB and RecD, which act simultaneously but indepen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2005-03, Vol.17 (5), p.745-750
Hauptverfasser: Handa, Naofumi, Bianco, Piero R., Baskin, Ronald J., Kowalczykowski, Stephen C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In Escherichia coli, χ (5′-GCTGGTGG-3′) is a recombination hotspot recognized by the RecBCD enzyme. Recognition of χ reduces both nuclease activity and translocation speed of RecBCD and activates RecA-loading ability. RecBCD has two motor subunits, RecB and RecD, which act simultaneously but independently. A longstanding hypothesis to explain the changes elicited by χ interaction has been “ejection” of the RecD motor from the holoenzyme at χ. To test this proposal, we visualized individual RecBCD molecules labeled via RecD with a fluorescent nanoparticle. We could directly see these labeled, single molecules of RecBCD moving at up to 1835 bp/s (∼0.6 μm/s). Those enzymes translocated to χ, paused, and continued at reduced velocity, without loss of RecD. We conclude that χ interaction induces a conformational change, resulting from binding of χ to RecC, and not from RecD ejection. This change is responsible for alteration of RecBCD function that persists for the duration of DNA translocation.
ISSN:1097-2765
1097-4164
DOI:10.1016/j.molcel.2005.02.011