Direct Visualization of RecBCD Movement Reveals Cotranslocation of the RecD Motor after χ Recognition
In Escherichia coli, χ (5′-GCTGGTGG-3′) is a recombination hotspot recognized by the RecBCD enzyme. Recognition of χ reduces both nuclease activity and translocation speed of RecBCD and activates RecA-loading ability. RecBCD has two motor subunits, RecB and RecD, which act simultaneously but indepen...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2005-03, Vol.17 (5), p.745-750 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In
Escherichia coli, χ (5′-GCTGGTGG-3′) is a recombination hotspot recognized by the RecBCD enzyme. Recognition of χ reduces both nuclease activity and translocation speed of RecBCD and activates RecA-loading ability. RecBCD has two motor subunits, RecB and RecD, which act simultaneously but independently. A longstanding hypothesis to explain the changes elicited by χ interaction has been “ejection” of the RecD motor from the holoenzyme at χ. To test this proposal, we visualized individual RecBCD molecules labeled via RecD with a fluorescent nanoparticle. We could directly see these labeled, single molecules of RecBCD moving at up to 1835 bp/s (∼0.6 μm/s). Those enzymes translocated to χ, paused, and continued at reduced velocity, without loss of RecD. We conclude that χ interaction induces a conformational change, resulting from binding of χ to RecC, and not from RecD ejection. This change is responsible for alteration of RecBCD function that persists for the duration of DNA translocation. |
---|---|
ISSN: | 1097-2765 1097-4164 |
DOI: | 10.1016/j.molcel.2005.02.011 |