The Molecular Architecture of the Mammalian DNA Repair Enzyme, Polynucleotide Kinase
Mammalian polynucleotide kinase (PNK) is a key component of both the base excision repair (BER) and nonhomologous end-joining (NHEJ) DNA repair pathways. PNK acts as a 5′-kinase/3′-phosphatase to create 5′-phosphate/3′-hydroxyl termini, which are a necessary prerequisite for ligation during repair....
Gespeichert in:
Veröffentlicht in: | Molecular cell 2005-03, Vol.17 (5), p.657-670 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mammalian polynucleotide kinase (PNK) is a key component of both the base excision repair (BER) and nonhomologous end-joining (NHEJ) DNA repair pathways. PNK acts as a 5′-kinase/3′-phosphatase to create 5′-phosphate/3′-hydroxyl termini, which are a necessary prerequisite for ligation during repair. PNK is recruited to repair complexes through interactions between its N-terminal FHA domain and phosphorylated components of either pathway. Here, we describe the crystal structure of intact mammalian PNK and a structure of the PNK FHA bound to a cognate phosphopeptide. The kinase domain has a broad substrate binding pocket, which preferentially recognizes double-stranded substrates with recessed 5′ termini. In contrast, the phosphatase domain efficiently dephosphorylates single-stranded 3′-phospho termini as well as double-stranded substrates. The FHA domain is linked to the kinase/phosphatase catalytic domain by a flexible tether, and it exhibits a mode of target selection based on electrostatic complementarity between the binding surface and the phosphothreonine peptide. |
---|---|
ISSN: | 1097-2765 1097-4164 |
DOI: | 10.1016/j.molcel.2005.02.012 |