Heterodimerization of opioid receptor-like 1 and mu-opioid receptors impairs the potency of micro receptor agonist
Nociceptin activation of ORL1 (opioid receptor-like 1 receptor) has been shown to antagonize mu receptor-mediated analgesia at the supraspinal level. ORL1 and mu-opioid receptor (muR) are co-expressed in several subpopulations of CNS neurons involved in regulating pain transmission. The amino acid s...
Gespeichert in:
Veröffentlicht in: | Journal of neurochemistry 2005-03, Vol.92 (6), p.1285-1294 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nociceptin activation of ORL1 (opioid receptor-like 1 receptor) has been shown to antagonize mu receptor-mediated analgesia at the supraspinal level. ORL1 and mu-opioid receptor (muR) are co-expressed in several subpopulations of CNS neurons involved in regulating pain transmission. The amino acid sequence of ORL1 also shares a high degree of homology with that of mu receptor. Thus, it is hypothesized that ORL1 and muR interact to form the heterodimer and that ORL1/muR heterodimerization may be one molecular basis for ORL1-mediated antiopioid effects in the brain. To test this hypothesis, myc-tagged ORL1 and HA-tagged muR are co-expressed in human embryonic kidney (HEK) 293 cells. Co-immunoprecipitation experiments demonstrate that ORL1 dimerizes with muR and that intracellular C-terminal tails of ORL1 and muR are required for the formation of ORL1/muR heterodimer. Second messenger assays further indicate that formation of ORL1/muR heterodimer selectively induces cross-desensitization of muR and impairs the potency by which [D-Ala(2),N-methyl-Phe(4),Gly-ol(5)]enkephalin (DAMGO) inhibits adenylate cyclase and stimulates p42/p44 mitogen-activated protein kinase (MAPK) phosphorylation. These results provide the evidence that ORL1/muR heterodimerization and the resulting impairment of mu receptor-activated signaling pathways may contribute to ORL1-mediated antiopioid effects in the brain. |
---|---|
ISSN: | 0022-3042 |