From MEMS to NEMS with carbon

Our work in carbon-microelectromechanical systems (C-MEMS) suggests that C-MEMS might provide a very interesting material and microfabrication approach to battery miniaturization, active DNA arrays and a wide variety of chemical and biological sensors. In C-MEMS, photoresist is patterned by photolit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2005-04, Vol.20 (10), p.2181-2187
Hauptverfasser: Wang, Chunlei, Madou, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our work in carbon-microelectromechanical systems (C-MEMS) suggests that C-MEMS might provide a very interesting material and microfabrication approach to battery miniaturization, active DNA arrays and a wide variety of chemical and biological sensors. In C-MEMS, photoresist is patterned by photolithography and subsequently pyrolyzed at high-temperatures in an oxygen-free environment. We established that it is possible to use C-MEMS to create very high-aspect ratio carbon structures (e.g. posts with an aspect ratio >10), suspended carbon plates and suspended carbon nanowires (C-NEMS). By changing the lithography conditions, soft and hard baking times and temperatures, additives to the resist, pyrolysis time, temperature and environment, C-MEMS permits a wide variety of interesting new MEMS and NEMS applications that employ structures having a wide variety of shapes, resistivities and mechanical properties. We also demonstrate that arrays of high-aspect ratio carbon posts can be charged/discharged with Li and this enables the fabrication of a smart switchable array of batteries.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2004.09.034