Par-3 controls tight junction assembly through the Rac exchange factor Tiam1

The par (partitioning-defective) genes express a set of conserved proteins that function in polarization and asymmetric cell division. Par-3 has multiple protein-interaction domains, and associates with Par-6 and atypical protein kinase C (aPKC). In Drosophila, Par-3 is essential for epithelial cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2005-03, Vol.7 (3), p.262-269
Hauptverfasser: Chen, Xinyu, Macara, Ian G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The par (partitioning-defective) genes express a set of conserved proteins that function in polarization and asymmetric cell division. Par-3 has multiple protein-interaction domains, and associates with Par-6 and atypical protein kinase C (aPKC). In Drosophila, Par-3 is essential for epithelial cell polarization. However, its function in mammals is unclear. Here we show that depletion of Par-3 in mammalian epithelial cells profoundly disrupts tight junction assembly. Expression of a carboxy-terminal fragment plus the third PDZ domain of Par-3 partially rescues junction assembly, but neither Par-6 nor aPKC binding is required. Unexpectedly, Rac is constitutively activated in cells lacking Par-3, and the assembly of tight junctions is efficiently restored by a dominant-negative Rac mutant. The Rac exchange factor Tiam1 (ref. 7) binds directly to the carboxy-terminal region of Par-3, and knockdown of Tiam1 enhances tight junction formation in cells lacking Par-3. These results define a critical function for Par-3 in tight junction assembly, and reveal a novel mechanism through which Par-3 engages in the spatial regulation of Rac activity and establishment of epithelial polarity.
ISSN:1465-7392
1476-4679
1476-4679
DOI:10.1038/ncb1226