Evaluation of the role of a cationic surfactant on the flow characteristics of fly ash slurry

Transportation of fly ash is a major problem in its efficient disposal. The main problem associated with fly ash transportation is that the particles settle down sooner than desired. The primary objective of this research is that not only the fly ash particles should remain floated till it reaches t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2009-09, Vol.169 (1), p.1134-1140
Hauptverfasser: Naik, H.K., Mishra, M.K., Rao Karanam, U.M., Deb, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transportation of fly ash is a major problem in its efficient disposal. The main problem associated with fly ash transportation is that the particles settle down sooner than desired. The primary objective of this research is that not only the fly ash particles should remain floated till it reaches the end but also settle down after that. In this investigation the role of a drag-reducing cationic surfactant and a counter-ion has been evaluated to achieve the objectives. The experimental results show encouraging trends of surfactant helping fly ash particles to remain water-borne. The material exhibited Newtonian behavior. This paper describes these in term of shear rates, shear stress, temperature, concentration and viscosity. Rheological tests were conducted using Advanced Computerized Rheometer. Zeta potential was measured to test the stability of the colloidal fly ash particles using Malvern Zeta Sizer instrument. Surface tension was also measured to know the drag reduction behavior of the fly ash slurry by using Surface Tensiometer. The test results and flow diagrams were generated using Rheoplus software and are presented in this paper. Surfactant concentration of 0%, 0.1%, 0.2%, 0.3%, 0.4% and 0.5% by weight was mixed with equal amount of counter-ion and the slurry was prepared by adding fly ash with ordinary tap water to achieve the desired solid concentration of 20% (by weight).
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2009.03.016