Expression and regulation of the renal Na/phosphate cotransporter NaPi-IIa in a mouse model deficient for the PDZ protein PDZK1

Inorganic phosphate (P(i)) is reabsorbed in the renal proximal tubule mainly via the type-IIa sodium-phosphate cotransporter (NaPi-IIa). This protein is regulated tightly by different factors, among them dietary P(i) intake and parathyroid hormone (PTH). A number of PDZ-domain-containing proteins ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 2005-01, Vol.449 (4), p.392-402
Hauptverfasser: Capuano, Paola, Bacic, Desa, Stange, Gerti, Hernando, Nati, Kaissling, Brigitte, Pal, Rinku, Kocher, Olivier, Biber, Jürg, Wagner, Carsten A, Murer, Heini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inorganic phosphate (P(i)) is reabsorbed in the renal proximal tubule mainly via the type-IIa sodium-phosphate cotransporter (NaPi-IIa). This protein is regulated tightly by different factors, among them dietary P(i) intake and parathyroid hormone (PTH). A number of PDZ-domain-containing proteins have been shown to interact with NaPi-IIa in vitro, such as Na(+)/H(+) exchanger-3 regulatory factor-1 (NHERF1) and PDZK1. PDZK1 is highly abundant in kidney and co-localizes with NaPi-IIa in the brush border membrane of proximal tubules. Recently, a knock-out mouse model for PDZK1 (Pdzk1(-/-)) has been generated, allowing the role of PDZK1 in the expression and regulation of the NaPi-IIa cotransporter to be examined in in vivo and in ex vivo preparations. The localization of NaPi-IIa and other proteins interacting with PDZK1 in vitro [Na(+)/H(+) exchanger (NHE3), chloride-formate exchanger (CFEX)/putative anion transporter-1 (PAT1), NHERF1] was not altered in Pdzk1(-/-) mice. The abundance of NaPi-IIa adapted to acute and chronic changes in dietary P(i) intake, but steady-state levels of NaPi-IIa were reduced in Pdzk1(-/-) under a P(i) rich diet. This was paralleled by a higher urinary fractional P(i) excretion. The abundance of the anion exchanger CFEX/PAT1 (SLC26A6) was also reduced. In contrast, NHERF1 abundance increased in the brush border membrane of Pdzk1(-/-) mice fed a high-P(i) diet. Acute regulation of NaPi-IIa by PTH in vivo and by PTH and activators of protein kinases A, C and G (PKA, PKC and PKG) in vitro (kidney slice preparation) was not altered in Pdzk1(-/-) mice. In conclusion, loss of PDZK1 did not result in major changes in proximal tubule function or NaPi-IIa regulation. However, under a P(i)-rich diet, loss of PDZK1 reduced NaPi-IIa abundance indicating that PDZK1 may play a role in the trafficking or stability of NaPi-IIa under these conditions.
ISSN:0031-6768
1432-2013
DOI:10.1007/s00424-004-1351-9