A Flexible B-Spline Model for Multiple Longitudinal Biomarkers and Survival

Often when jointly modeling longitudinal and survival data, we are interested in a multivariate longitudinal measure that may not fit well by linear models. To overcome this problem, we propose a joint longitudinal and survival model that has a nonparametric model for the longitudinal markers. We us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrics 2005-03, Vol.61 (1), p.64-73
Hauptverfasser: Brown, Elizabeth R., Ibrahim, Joseph G., DeGruttola, Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Often when jointly modeling longitudinal and survival data, we are interested in a multivariate longitudinal measure that may not fit well by linear models. To overcome this problem, we propose a joint longitudinal and survival model that has a nonparametric model for the longitudinal markers. We use cubic B-splines to specify the longitudinal model and a proportional hazards model to link the longitudinal measures to the hazard. To fit the model, we use a Markov chain Monte Carlo algorithm. We select the number of knots for the cubic B-spline model using the Conditional Predictive Ordinate (CPO) and the Deviance Information Criterion (DIC). The method and model selection approach are validated in a simulation. We apply this method to examine the link between viral load, CD4 count, and time to event in data from an AIDS clinical trial. The cubic B-spline model provides a good fit to the longitudinal data that could not be obtained with simple parametric models.
ISSN:0006-341X
1541-0420
DOI:10.1111/j.0006-341X.2005.030929.x