Up-regulation of neuropoiesis generating glial progenitors that infiltrate rat intracranial glioma

To investigate adult neural stem cell (NSC) biology in relation to glioma, the C6 glioma cell line was tagged with green fluorescent protein (GFP) and inoculated into the brain of adult rats. The in vivo biological response of the brain to glioma was studied using immunohistochemical analysis of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuro-oncology 2005-02, Vol.71 (3), p.245-255
Hauptverfasser: DUNTSCH, Christopher, QIHONG ZHOU, WEIMAR, James D, FRANKEL, Bruce, ROBERTSON, Jon H, POURMOTABBED, Tayebeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To investigate adult neural stem cell (NSC) biology in relation to glioma, the C6 glioma cell line was tagged with green fluorescent protein (GFP) and inoculated into the brain of adult rats. The in vivo biological response of the brain to glioma was studied using immunohistochemical analysis of the subventricular zone (SVZ), peritumoral areas, and glioma. Nestin immunoreactive cells were found infiltrating glioma, but the distribution of abnormal immunoreactivity was restricted to the dorsal and medial border of the tumor relative to the ipsilateral ventricle. The SVZ was found to be hypertrophic, hypercellular, and up-regulated nestin expression. Furthermore, a dense contiguous population of nestin immunoreactive cells could be found streaming from ipsilateral dorsal tip of the SVZ, tracking along the ventral margin of the corpus callosum, and fanning out to encompass and infiltrate the proximal tumor border. Although most cells were either nestin or glial fibrillary acidic protein (GFAP) immunoreactive in the SVZ and along the ventral margin of the corpus callosum, the number of cells co-expressing both markers increased proportionally as the tumor was approached so that the predominant cell population along the proximal tumor border was GFAP immunoreactive. Finally, we demonstrated that a significant proportion of cells found in areas of abnormal immunoreactivity were proliferating, especially in peritumoral areas. In summary, there is an induction of neuropoietic activity in a rat intracranial glioma model that results in an infiltration and accumulation of abnormal nestin and GFAP expressing cells with proliferative potential along the dorsal and medial border of intracranial C6 glioma.
ISSN:0167-594X
1573-7373
DOI:10.1007/s11060-004-2156-6