Feature extraction for pulmonary crackle representation via wavelet networks
Abstract In this study, wavelet networks have been used to parameterize and quantify pulmonary crackles with an aim to depict the waveform with a small set of meaningful parameters. Complex Morlet wavelets are used at the nodes of both single and double-node networks to model the waveforms with the...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2009-08, Vol.39 (8), p.713-721 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract In this study, wavelet networks have been used to parameterize and quantify pulmonary crackles with an aim to depict the waveform with a small set of meaningful parameters. Complex Morlet wavelets are used at the nodes of both single and double-node networks to model the waveforms with the double-node rendering smaller modeling error. The features extracted from the model parameters have been compared with the conventional time domain features in a two-class clustering experiment with nearly 90% matching between the clusters of different parameter sets and with the model parameters forming clusters more closely distributed around their means and better separated from each other. Moreover, using simulated crackles embedded on real respiratory sounds, features extracted from wavelet networks have been shown to be more robust to background vesicular sounds compared to conventional parameters which are very sensitive to noise. |
---|---|
ISSN: | 0010-4825 1879-0534 |
DOI: | 10.1016/j.compbiomed.2009.05.008 |