Quantitative Raman Reaction Monitoring Using the Solvent as Internal Standard

Despite its potential, the use of Raman spectroscopy for real-time quantitative reaction monitoring is still rather limited. The problems of fluorescence, laser instability, low intensities, and the inner filter effect often outscore the advantages as narrow bands, the use of glass fibers, and low s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2005-03, Vol.77 (5), p.1228-1236
Hauptverfasser: Aarnoutse, Petra J, Westerhuis, Johan A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite its potential, the use of Raman spectroscopy for real-time quantitative reaction monitoring is still rather limited. The problems of fluorescence, laser instability, low intensities, and the inner filter effect often outscore the advantages as narrow bands, the use of glass fibers, and low scattering of water and glass. In this paper, we present real-time quantitative monitoring of the catalyzed Heck reaction by using the solvent as internal standard. In this way, all multiplicative distortions, e.g., laser intensity variations or absorbance of the laser light, can be corrected for. We also show that a limited amount of fluorescence does not hamper the analysis. Finally, we present a new method to correct for the inner filter effect, i.e., the absorbance of Raman scattered light by the reaction medium. Simultaneous absorption measurements of the reaction mixture enable accurate correction of Raman signals for the inner filter effect. Thus, for reaction monitoring applications, a Raman spectrometer should be equipped with an absorbance measurement device.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac0401523