Generation and Characterization of Highly Strained Dibenzotetrakisdehydro[12]- and Dibenzopentakisdehydro[14]annulenes

To generate dibenzotetrakisdehydro[12]- and dibenzopentakisdehydro[14]annulenes ([12]- and [14]DBAs) having a highly deformed triyne moiety, [4.3.2]propellatriene-anneleted dehydro[12]- and dehydro[14]annulenes were prepared as their precursors. UV irradiation of the precursors resulted in the photo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of organic chemistry 2005-03, Vol.70 (5), p.1853-1864
Hauptverfasser: Hisaki, Ichiro, Eda, Takeshi, Sonoda, Motohiro, Niino, Hiroyuki, Sato, Tadatake, Wakabayashi, Tomonari, Tobe, Yoshito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To generate dibenzotetrakisdehydro[12]- and dibenzopentakisdehydro[14]annulenes ([12]- and [14]DBAs) having a highly deformed triyne moiety, [4.3.2]propellatriene-anneleted dehydro[12]- and dehydro[14]annulenes were prepared as their precursors. UV irradiation of the precursors resulted in the photochemical [2 + 2] cycloreversion to generate the strained [12]- and [14]DBAs, respectively. The [12]DBA was not detected by 1H NMR spectroscopy, but it was intercepted as Diels−Alder adducts in solution, suggesting its intermediacy. Its spectroscopic characterization was successfully carried out by UV−vis spectroscopy in a 2-methyltetrahydrofuran (MTHF) glass matrix at 77 K and by FT-IR spectroscopy in an argon matrix at 20 K. On the other hand, the [14]DBA was stable enough for observation by 1H and 13C NMR spectra in solution, though it was not isolated because of the low efficiency of the cycloreversion. The [14]DBA was also characterized by interception as Diels−Alder adducts in solution and by UV−vis spectroscopy in a MTHF glass matrix at 77 K. The kinetic stabilities of the DBAs are compared with the related dehydrobenzoannulenes with respect to the topology of the π-systems. In addition, the tropicity of the [14]DBA is discussed based on its experimental and theoretical 1H NMR chemical shifts.
ISSN:0022-3263
1520-6904
DOI:10.1021/jo047857p