Recellularization of Decellularized Allograft Scaffolds in Ovine Great Vessel Reconstructions

Decellularized allograft tissues have been identified as a potential extracellular matrix (ECM) scaffold on which to base recellularized tissue-engineered vascular and valvular substitutes. Decreased antigenicity and the capacity to recellularize suggest that such constructs may have favorable durab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of thoracic surgery 2005-03, Vol.79 (3), p.888-896
Hauptverfasser: Ketchedjian, Ara, Jones, Alyce Linthurst, Krueger, Paula, Robinson, Elliot, Crouch, Katrina, Wolfinbarger, Lloyd, Hopkins, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Decellularized allograft tissues have been identified as a potential extracellular matrix (ECM) scaffold on which to base recellularized tissue-engineered vascular and valvular substitutes. Decreased antigenicity and the capacity to recellularize suggest that such constructs may have favorable durability. Detergent/enzyme decellularization methods remove cells and cellular debris while leaving intact structural protein “scaffolds.” Allograft pulmonary artery tissues decellularized with an anionic detergent/enzyme methodology were tested in a long-term implantation model that used arterial wall repairs in the great vessels of juvenile sheep. Twelve test sheep were implanted (n = 4) for each of three different scaffold protocols that compared traditional dimethylsulfoxide cryopreservation, cryopreservation followed by decellularization, and decellularization of fresh tissue. Four additional sheep served as controls (n = 2 sham, n = 2 fresh tissue). Patches were fashioned and implanted into pulmonary artery and aortic defects. Panel reactive antibodies (PRA) were measured over time (10 to 20 weeks). Explant histopathology determined recellularization morphology as well as calcium, collagen, and elastin distribution within explanted tissue. Unlike traditionally cryopreserved tissues, the decellularized tissues contained no residual cells or cellular debris before implantation, which correlated with measurable reductions in PRA. Decellularized explants demonstrated time-dependent migration of recipient cells through matrix, typically staining positive for α-smooth muscle actin with no calcification. The properties demonstrated seem consistent with characteristics necessary for implantable tissue-engineered scaffolds. The decellularization method described appears to create a biologically suitable ECM scaffold for in vivo migration of phenotypically appropriate cells while avoiding antigenicity and calcification.
ISSN:0003-4975
1552-6259
DOI:10.1016/j.athoracsur.2004.09.033