Mixtures-of-experts of autoregressive time series: asymptotic normality and model specification

We consider a class of nonlinear models based on mixtures of local autoregressive time series. At any given time point, we have a certain number of linear models, denoted as experts, where the vector of covariates may include lags of the dependent variable. Additionally, we assume the existence of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2005-01, Vol.16 (1), p.39-56
Hauptverfasser: Carvalho, A.X., Tanner, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a class of nonlinear models based on mixtures of local autoregressive time series. At any given time point, we have a certain number of linear models, denoted as experts, where the vector of covariates may include lags of the dependent variable. Additionally, we assume the existence of a latent multinomial variable, whose distribution depends on the same covariates as the experts, that determines which linear process is observed. This structure, denoted as mixture-of-experts (ME), is considerably flexible in modeling the conditional mean function, as shown by Jiang and Tanner. We present a formal treatment of conditions to guarantee the asymptotic normality of the maximum likelihood estimator (MLE), under stationarity and nonstationarity, and under correct model specification and model misspecification. The performance of common model selection criteria in selecting the number of experts is explored via Monte Carlo simulations. Finally, we present applications to simulated and real data sets, to illustrate the ability of the proposed structure to model not only the conditional mean, but also the whole conditional density.
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/TNN.2004.839356