Pro-IL-16 Regulation in Activated Murine CD4+ Lymphocytes

Prior DNA microarray studies suggested that IL-16 mRNA levels decrease following T cell activation, a property unique among cytokines. We examined pro-IL-16 mRNA and protein expression in resting and anti-CD3 mAb-activated primary murine CD4(+) T cells. Consistent with the microarray reports, pro-IL...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2005-03, Vol.174 (5), p.2738-2745
Hauptverfasser: Ren, Fucheng, Zhan, Xin, Martens, Gregory, Lee, Jinhee, Center, David, Hanson, Sue Kim, Kornfeld, Hardy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Prior DNA microarray studies suggested that IL-16 mRNA levels decrease following T cell activation, a property unique among cytokines. We examined pro-IL-16 mRNA and protein expression in resting and anti-CD3 mAb-activated primary murine CD4(+) T cells. Consistent with the microarray reports, pro-IL-16 mRNA levels fell within 4 h of activation, and this response is inhibited by cyclosporin A. Total cellular pro-IL-16 protein also fell, reaching a nadir at 48 h. Pro-IL-16 comprises a C-terminal cytokine domain and an N-terminal prodomain that are cleaved by caspase-3. Pro-IL-16 expressed in transfected tumor cells was previously shown to translocate to the nucleus and to promote G(0)/G(1) arrest by stabilizing the cyclin-dependent kinase inhibitor p27(Kip1). In the present study, we observed increased S-phase kinase-associated protein 2 mRNA expression in IL-16 null mice, but basal expression and activation-dependent regulation of p27(Kip1) were no different from wild-type mice. Stimulation with anti-CD3 mAb induced transiently greater thymidine incorporation in IL-16-deficient CD4(+) T cells than wild-type controls, but there was no difference in cell survival or in the CFSE dilution profiles. Analysis of CD4(+) T cell proliferation in vivo using BrdU labeling similarly failed to identify a hyperproliferative phenotype in T cells lacking IL-16. These data demonstrate that pro-IL-16 mRNA and protein expression are dynamically regulated during CD4(+) T cell activation by a calcineurin-dependent mechanism, and that pro-IL-16 might influence T cell cycle regulation, although not in a dominant manner.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.174.5.2738