Effect of biological soil crusts on soil elemental concentrations: implications for biogeochemistry and as traceable biosignatures of ancient life on land
Biological soil crusts (BSCs) are topsoil biosedimentary structures built by photosynthetic microbes commonly found today on arid soils. They play a role in soil stabilization and the fertility of arid lands, and are considered modern analogues of ancient terrestrial microbial communities. We determ...
Gespeichert in:
Veröffentlicht in: | Geobiology 2009-06, Vol.7 (3), p.348-359 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biological soil crusts (BSCs) are topsoil biosedimentary structures built by photosynthetic microbes commonly found today on arid soils. They play a role in soil stabilization and the fertility of arid lands, and are considered modern analogues of ancient terrestrial microbial communities. We determined the concentrations of four biogenic and 21 other elements, mostly metals, in surface soils that hosted BSCs, in the soils underneath those crusts, and in proximate but non-crusted surface soils. The samples were from six sites in the Colorado Plateau highlands and the Sonoran Desert lowlands. In spite of the variability in climate and geologic setting, we found statistically significant overall trends of enrichment in biogenic elements and depletion in non-biogenic elements when BSCs were compared with non-crusted soils. The differences between crusted and non-crusted soils were statistically significant at ~95% confidence for C, N (enrichments) and for Ca, Cr, Mn, Cu, Zn, As, and Zr (depletions). These trends are best explained by the activity of microbes. As expected, no differences in the concentrations of C, N, P, and S were detected between the soils underneath the crusts and the non-crusted soils, but the former showed depletion of non-biogenic elements, indicating that the leaching effect of crust microbes extends downward in the soil. These patterns speak to the need for a sustained input of allochthonous material, possibly dust, to maintain BSC fertility. These elemental patterns can be considered a biosignature that may be preserved in the rock record and might help identify ancient microbial communities on land. |
---|---|
ISSN: | 1472-4677 1472-4669 |
DOI: | 10.1111/j.1472-4669.2009.00204.x |