Essential involvement of cross-talk between IFN-γ and TNF-α in CXCL10 production in human THP-1 monocytes

Interferon (IFN)‐γ‐induced protein 10 (IP‐10/CXCL10), a CXC chemokine, has been documented in several inflammatory and autoimmune disorders including atopic dermatitis and bronchial asthma. Although CXCL10 could be induced by IFN‐γ depending on cell type, the mechanisms regulating CXCL10 production...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2009-09, Vol.220 (3), p.690-697
Hauptverfasser: Qi, Xu-Feng, Kim, Dong-Heui, Yoon, Yang-Suk, Jin, Dan, Huang, Xue-Zhu, Li, Jian-Hong, Deung, Young-Kun, Lee, Kyu-Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interferon (IFN)‐γ‐induced protein 10 (IP‐10/CXCL10), a CXC chemokine, has been documented in several inflammatory and autoimmune disorders including atopic dermatitis and bronchial asthma. Although CXCL10 could be induced by IFN‐γ depending on cell type, the mechanisms regulating CXCL10 production following treatment with combination of IFN‐γ and TNF‐α have not been adequately elucidated in human monocytes. In this study, we showed that TNF‐α had more potential than IFN‐γ to induce CXCL10 production in THP‐1 monocytes. Furthermore, IFN‐γ synergistically enhanced the production of CXCL10 in parallel with the activation of NF‐κB in TNF‐α‐stimulated THP‐1 cells. Blockage of STAT1 or NF‐κB suppressed CXCL10 production. JAKs inhibitors suppressed IFN‐γ plus TNF‐α‐induced production of CXCL10 in parallel with activation of STAT1 and NF‐κB, while ERK inhibitor suppressed production of CXCL10 as well as activation of NF‐κB, but not that of STAT1. IFN‐γ‐induced phosphorylation of JAK1 and JAK2, whereas TNF‐α induced phosphorylation of ERK1/2. Interestingly, IFN‐γ alone had no effect on phosphorylation and degradation of IκB‐α, whereas it significantly promoted TNF‐α‐induced phosphorylation and degradation of IκB‐α. These results suggest that TNF‐α induces CXCL10 production by activating NF‐κB through ERK and that IFN‐γ induces CXCL10 production by increasing the activation of STAT1 through JAKs pathways. Of note, TNF‐α‐induced NF‐κB may be the primary pathway contributing to CXCL10 production in THP‐1 cells. IFN‐γ potentiates TNF‐α‐induced CXCL10 production in THP‐1 cells by increasing the activation of STAT1 and NF‐κB through JAK1 and JAK2. J. Cell. Physiol. 220: 690–697, 2009. © 2009 Wiley‐Liss, Inc.
ISSN:0021-9541
1097-4652
DOI:10.1002/jcp.21815