a2 mating-type-locus gene lga2 of Ustilago maydis interferes with mitochondrial dynamics and fusion, partially in dependence on a Dnm1-like fission component

The a2 mating-type-locus gene lga2 of the basidiomycete Ustilago maydis encodes a mitochondrial protein that interferes with mitochondrial morphology and integrity, and that plays a role in uniparental inheritance of mitochondrial DNA. To address the mode of action of Lga2, we investigated its Dnm1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2009-07, Vol.122 (14), p.2402-2412
Hauptverfasser: Mahlert, Michael, Vogler, Christine, Stelter, Kathrin, Hause, Gerd, Basse, Christoph W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The a2 mating-type-locus gene lga2 of the basidiomycete Ustilago maydis encodes a mitochondrial protein that interferes with mitochondrial morphology and integrity, and that plays a role in uniparental inheritance of mitochondrial DNA. To address the mode of action of Lga2, we investigated its Dnm1 (a dynamin-related protein)-dependent effects. Here, we demonstrate that Dnm1 functions as a mitochondrial fission component in U. maydis and mediates Lga2-induced mitochondrial fragmentation. Mitochondrial fusion occurred very inefficiently in matings of U. maydis wild-type strains, but was strongly stimulated in the absence of dnm1 and highest in either wild-type or Δdnm1 combinations when the a2 partner was deleted in lga2. This indicates that Dnm1 plays a central role in opposing mitochondrial fusion in response to endogenous lga2 expression and that Lga2 additionally inhibits fusion in a dnm1-independent manner. Our results further show that Lga2 does not stimulate increased turnover of the putative fusion protein Fzo1 and causes mitochondrial branching, loss of mitochondrial DNA and fitness reduction independently of dnm1. We conclude that Lga2 acts upstream of Dnm1, but controls mitochondrial integrity independently of Dnm1-mediated fission. In addition, we demonstrate a role of dnm1 in fungal virulence.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.039354