Senile hair graying: H₂O₂-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair

Senile graying of human hair has been the subject of intense research since ancient times. Reactive oxygen species have been implicated in hair follicle melanocyte apoptosis and DNA damage. Here we show for the first time by FT-Raman spectroscopy in vivo that human gray/white scalp hair shafts accum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FASEB journal 2009-07, Vol.23 (7), p.2065-2075
Hauptverfasser: Wood, J.M, Decker, H, Hartmann, H, Chavan, B, Rokos, H, Spencer, J.D, Hasse, S, Thornton, M.J, Shalbaf, M, Paus, R, Schallreuter, K.U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Senile graying of human hair has been the subject of intense research since ancient times. Reactive oxygen species have been implicated in hair follicle melanocyte apoptosis and DNA damage. Here we show for the first time by FT-Raman spectroscopy in vivo that human gray/white scalp hair shafts accumulate hydrogen peroxide (H₂O₂) in millimolar concentrations. Moreover, we demonstrate almost absent catalase and methionine sulfoxide reductase A and B protein expression via immunofluorescence and Western blot in association with a functional loss of methionine sulfoxide (Met-S=O) repair in the entire gray hair follicle. Accordingly, Met-S=O formation of Met residues, including Met 374 in the active site of tyrosinase, the key enzyme in melanogenesis, limits enzyme functionality, as evidenced by FT-Raman spectroscopy, computer simulation, and enzyme kinetics, which leads to gradual loss of hair color. Notably, under in vitro conditions, Met oxidation can be prevented by L-methionine. In summary, our data feed the long-voiced, but insufficiently proven, concept of H₂O₂-induced oxidative damage in the entire human hair follicle, inclusive of the hair shaft, as a key element in senile hair graying, which does not exclusively affect follicle melanocytes. This new insight could open new strategies for intervention and reversal of the hair graying process.--Wood, J. M., Decker, H., Hartmann, H., Chavan, B., Rokos, H., Spencer, J. D., Hasse, S., Thornton, M. J., Shalbaf, M., Paus, R., Schallreuter, K. U. Senile hair graying: H₂O₂-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair.
ISSN:0892-6638
1530-6860
DOI:10.1096/fj.08-125435