Hopping Transport in Conductive Heterocyclic Oligomers: Reorganization Energies and Substituent Effects
Molecular scale charge motion in disordered organic materials at ambient temperature occurs via a hopping-type mechanism with rates dictated both by the charge transfer integral and by the reorganization energy due to geometric relaxation. This contribution presents a systematic theoretical analysis...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2005-02, Vol.127 (7), p.2339-2350 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Molecular scale charge motion in disordered organic materials at ambient temperature occurs via a hopping-type mechanism with rates dictated both by the charge transfer integral and by the reorganization energy due to geometric relaxation. This contribution presents a systematic theoretical analysis of cation internal reorganization energies for a broad family of organic oligoheterocyclesvariation of reorganization energy with oligomer chain length, heteroatom identity, and a range of heterocycle substituents provides key information on important structural properties governing internal reorganization energies. At room temperature, the range in reorganization energies induced by substituent variations corresponds to a >102-fold variation in intrinsic hole transfer rate, suggesting that changes in reorganization energy dominate variations in charge-transfer rates for many semiconducting/conducting oligomers. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja0461421 |