Zoosporic Tolerance to pH Stress and Its Implications for Phytophthora Species in Aquatic Ecosystems
Phytophthora species, a group of destructive plant pathogens, are commonly referred to as water molds, but little is known about their aquatic ecology. Here we show the effect of pH on zoospore survival of seven Phytophthora species commonly isolated from irrigation reservoirs and natural waterways...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 2009-07, Vol.75 (13), p.4307-4314 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phytophthora species, a group of destructive plant pathogens, are commonly referred to as water molds, but little is known about their aquatic ecology. Here we show the effect of pH on zoospore survival of seven Phytophthora species commonly isolated from irrigation reservoirs and natural waterways and dissect zoospore survival strategy. Zoospores were incubated in a basal salt liquid medium at pH 3 to 11 for up to 7 days and then plated on a selective medium to determine their survival. The optimal pHs differed among Phytophthora species, with the optimal pH for P. citricola at pH 9, the optimal pH for P. tropicalis at pH 5, and the optimal pH for the five other species, P. citrophthora, P. insolita, P. irrigata, P. megasperma, and P. nicotianae, at pH 7. The greatest number of colonies was recovered from zoospores of all species plated immediately after being exposed to different levels of pH. At pH 5 to 11, the recovery rate decreased sharply (P [less-than or equal to] 0.0472) after 1-day exposure for five of the seven species. In contrast, no change occurred (P greater-than-or-equal 0.1125) in the recovery of any species even after a 7-day exposure at pH 3. Overall, P. megasperma and P. citricola survived longer at higher rates in a wider range of pHs than other species did. These results are generally applicable to field conditions as indicated by additional examination of P. citrophthora and P. megasperma in irrigation water at different levels of pH. These results challenge the notion that all Phytophthora species inhabit aquatic environments as water molds and have significant implications in the management of plant diseases resulting from waterborne microbial contamination. |
---|---|
ISSN: | 0099-2240 1098-5336 1098-6596 |
DOI: | 10.1128/AEM.00119-09 |