Development and Validation of a Rapid Column-Switching High-Performance Liquid Chromatographic Method for the Determination of Lamotrigine in Human Serum

This study describes a simple and sensitive column-switching high-performance liquid chromatographic method with UV detection for the determination of Lamotrigine in 50 µL of serum. After solidphase extraction of Lamotrigine on an Oasis HLB extraction precolumn (20 × 3.9 mm; dp: 25 µm), chromatograp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chromatographic science 2009-07, Vol.47 (6), p.478-484
Hauptverfasser: del Rosario Brunetto, María, Contreras, Yaritza, Delgado, Yelitza, Gallignani, Máximo, Estela, José Manuel, Cerdà Martin, Víctor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study describes a simple and sensitive column-switching high-performance liquid chromatographic method with UV detection for the determination of Lamotrigine in 50 µL of serum. After solidphase extraction of Lamotrigine on an Oasis HLB extraction precolumn (20 × 3.9 mm; dp: 25 µm), chromatographic separation was achieved at 30°C on a Chromolith RP-18e column (50 mm ° 4.6 mm i.d.) using a solution of 20% acetonitrile in 15 mM phosphate buffer (pH 7.0) as the mobile phase, at a flow-rate of 2.0 mL/min. The eluant was detected at 215 nm. The retention time for Lamotrigine was 1.28 min. The total analysis time was ca. 5 min. However, the overlap of sample preparation, analysis, and reconditioning of the precolumn increased the overall sample throughput to one injection every 3 min. The method was validated for system suitability, linearity, precision, accuracy, robustness, and limit of quantitation. The linearity of the calibration lines, expressed by the linear correlation coefficient, was better than 0.9996. Recovery studies achieved from Lamotrigine spiked plasma samples showed values greater than 93%, demonstrating the excellent extraction efficiency of the precolumn. Intra- and inter-day precision were generally acceptable; the coefficient of variation was < 2.3% in all cases. The detection limits for Lamotrigine at a signal-to-noise ratio of 3 was 0.002 µg/mL when a sample volume of 50 µL was injected. However, it was possible to enhance the sensitivity further by injecting larger volumes, up to 200 µL. The method was shown to be robust and the results were within the acceptable range. The method was successfully applied to the determination of Lamotrigine in human serum samples of patients submitted to Lamotrigine therapy.
ISSN:0021-9665
1945-239X
DOI:10.1093/chromsci/47.6.478