Variability in noise-driven integrator neurons

Neural variability in the presence of noise has been studied mainly in resonator neurons, such as Hodgkin-Huxley or FitzHugh-Nagumo models. Here we investigate this variability for integrator neurons, whose excitability is due to a saddle-node bifurcation of the rest state instead of a Hopf bifurcat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2005-01, Vol.71 (1 Pt 1), p.011911-011911, Article 011911
Hauptverfasser: Guantes, R, de Polavieja, Gonzalo G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neural variability in the presence of noise has been studied mainly in resonator neurons, such as Hodgkin-Huxley or FitzHugh-Nagumo models. Here we investigate this variability for integrator neurons, whose excitability is due to a saddle-node bifurcation of the rest state instead of a Hopf bifurcation. Using simple theoretical expressions for the interspike times distributions, we obtain coefficients of variation in good agreement with numerical calculations in realistic neuron models. The main features of this coefficient as a function of noise depend on the refractory period and on the presence of bistability. The bistability is responsible for the existence of two different time scales in the spiking behavior giving an antiresonance effect.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.71.011911