Partially asymmetric exclusion models with quenched disorder

We consider the one-dimensional partially asymmetric exclusion process with random hopping rates, in which a fraction of particles (or sites) have a preferential jumping direction against the global drift. In this case, the accumulated distance traveled by the particles, x, scales with the time, t,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2005-01, Vol.94 (1), p.010601.1-010601.4, Article 010601
Hauptverfasser: JUHASZ, Robert, SANTEN, Ludger, IGLOI, Ferenc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the one-dimensional partially asymmetric exclusion process with random hopping rates, in which a fraction of particles (or sites) have a preferential jumping direction against the global drift. In this case, the accumulated distance traveled by the particles, x, scales with the time, t, as x approximately t(1/z), with a dynamical exponent z>0. Using extreme value statistics and an asymptotically exact strong disorder renormalization group method, we exactly calculate z(PW) for particlewise disorder, which is argued to be related as z(SW)=z(PW)/2 for sitewise disorder. In the symmetric case with zero mean drift, the particle diffusion is ultraslow, logarithmic in time.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.94.010601