Cell-free Transport from the trans-Golgi Network to Late Endosome Requires Factors Involved in Formation and Consumption of Clathrin-coated Vesicles
Transport between the trans-Golgi network (TGN) and late endosome represents a conserved, clathrin-dependent sorting event that separates lysosomal from secretory cargo molecules and is also required for localization of integral membrane proteins to the TGN. Previously, we reported a cell-free react...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2005-02, Vol.280 (6), p.4442-4450 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Transport between the trans-Golgi network (TGN) and late endosome represents a conserved, clathrin-dependent sorting event that separates lysosomal from secretory cargo molecules and is also required for localization of integral membrane proteins to the TGN. Previously, we reported a cell-free reaction that reconstitutes transport from the yeast TGN to the late endosome/prevacuolar compartment (PVC) and requires the PVC t-SNARE Pep12p. Here, we report that factors required both for formation of clathrin-coated vesicles at the TGN (the Chc1p clathrin heavy chain and the Vps1p dynamin homolog) and for vesicle fusion at the PVC (the Vps21p rab protein and Vps45p SM (Sec1/Munc18) protein) are required for cell-free transport. The marker for TGN-PVC transport, Kex2p, is initially present in a clathrin-containing membrane compartment that is competent for delivery of Kex2p to the PVC. A Kex2p chimera containing the cytosolic tail (C-tail) of the vacuolar protein sorting receptor, Vps10p, is also efficiently transported to the PVC. Antibodies against the Kex2p and Vps10p C-tails selectively block transport of Kex2p and the Kex2-Vps10p chimera. The requirements for factors involved in vesicle formation and fusion, the identification of the donor compartment as a clathrin-containing membrane, and the need for accessibility of C-tail sequences argue that the TGN-PVC transport reaction involves selective incorporation of TGN cargo molecules into clathrin-coated vesicle intermediates. Further biochemical dissection of this reaction should help elucidate the molecular requirements and hierarchy of events in TGN-to-PVC sorting and transport. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M412553200 |