How to complete performance graphs in content-based image retrieval: add generality and normalize scope
The performance of a content-based image retrieval (CBIR) system, presented in the form of precision-recall or precision-scope graphs, offers an incomplete overview of the system under study: the influence of the irrelevant items (embedding) is obscured. We propose a comprehensive and well-normalize...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2005-02, Vol.27 (2), p.245-251 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | 2 |
container_start_page | 245 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 27 |
creator | Huijsmans, D.P. Sebe, N. |
description | The performance of a content-based image retrieval (CBIR) system, presented in the form of precision-recall or precision-scope graphs, offers an incomplete overview of the system under study: the influence of the irrelevant items (embedding) is obscured. We propose a comprehensive and well-normalized description of the ranking performance compared to the performance of an ideal retrieval system defined by ground-truth for a large number of predefined queries. We advocate normalization with respect to relevant class size and restriction to specific normalized scope values (the number of retrieved items). We also propose new three and two-dimensional performance graphs for total recall studies in a range of embeddings. |
doi_str_mv | 10.1109/TPAMI.2005.30 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_67399743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1374870</ieee_id><sourcerecordid>67399743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-14ecc960be5e683f1d3361894ec452ec93690eb9daf1f0f006a4f70902d174033</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agit1Wj54ECULtadaXn5P0VoraQkUP9TxkMy_rlJnMmMxa2r_erLuw0IOeHuR9-ELel5A3DJaMgf14-_3i6_WSA6ilgGdkwaywlVDCPicLYJpXxnBzRI5zvgNgUoF4SY6Y0sYozRZkfTXe03mkfhymHmekE6YwpsFFj3Sd3PQz0y6WdZwxztXKZWxpN7g10oRz6vC368-pa1u6xojJ9d38QF1sadyG9N0j0uzHCV-RF8H1GV_v5wn58fnT7eVVdfPty_XlxU3lpWBzxSR6bzWsUKE2IrBWCM2MLc9ScfRWaAu4sq0LLEAA0E6GGizwltUShDghZ7vcKY2_NpjnZuiyx753EcdNbozVnCulZZEf_il1Laytpfgv5AYks6ALfP8E3o2bFMt3G6NrXSuwvKBqh3wac04YmimVe6aHhkGzbbT522izbbQRUPy7fehmNWB70PsKCzjdA5e960Mq1XX54LSUtoQV93bnOkQ8rEUtTQ3iD_InsLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867675092</pqid></control><display><type>article</type><title>How to complete performance graphs in content-based image retrieval: add generality and normalize scope</title><source>IEEE Electronic Library (IEL)</source><creator>Huijsmans, D.P. ; Sebe, N.</creator><creatorcontrib>Huijsmans, D.P. ; Sebe, N.</creatorcontrib><description>The performance of a content-based image retrieval (CBIR) system, presented in the form of precision-recall or precision-scope graphs, offers an incomplete overview of the system under study: the influence of the irrelevant items (embedding) is obscured. We propose a comprehensive and well-normalized description of the ranking performance compared to the performance of an ideal retrieval system defined by ground-truth for a large number of predefined queries. We advocate normalization with respect to relevant class size and restriction to specific normalized scope values (the number of retrieved items). We also propose new three and two-dimensional performance graphs for total recall studies in a range of embeddings.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2005.30</identifier><identifier>PMID: 15688561</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Computer science; control theory; systems ; Computer Simulation ; Content based retrieval ; content-based image retrieval ; Databases, Factual ; Exact sciences and technology ; Graphs ; Humans ; Image databases ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image retrieval ; Index Terms- Multimedia information systems ; Indexing ; Information retrieval ; Information Storage and Retrieval - methods ; Information systems ; Intelligence ; NIST ; Pattern analysis ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; performance evaluation ; Queries ; Recall ; Reproducibility of Results ; Retrieval ; Sensitivity and Specificity ; Size measurement ; Subtraction Technique ; Testing ; Two dimensional</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2005-02, Vol.27 (2), p.245-251</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-14ecc960be5e683f1d3361894ec452ec93690eb9daf1f0f006a4f70902d174033</citedby><cites>FETCH-LOGICAL-c431t-14ecc960be5e683f1d3361894ec452ec93690eb9daf1f0f006a4f70902d174033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1374870$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1374870$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16449200$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15688561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huijsmans, D.P.</creatorcontrib><creatorcontrib>Sebe, N.</creatorcontrib><title>How to complete performance graphs in content-based image retrieval: add generality and normalize scope</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>The performance of a content-based image retrieval (CBIR) system, presented in the form of precision-recall or precision-scope graphs, offers an incomplete overview of the system under study: the influence of the irrelevant items (embedding) is obscured. We propose a comprehensive and well-normalized description of the ranking performance compared to the performance of an ideal retrieval system defined by ground-truth for a large number of predefined queries. We advocate normalization with respect to relevant class size and restriction to specific normalized scope values (the number of retrieved items). We also propose new three and two-dimensional performance graphs for total recall studies in a range of embeddings.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Content based retrieval</subject><subject>content-based image retrieval</subject><subject>Databases, Factual</subject><subject>Exact sciences and technology</subject><subject>Graphs</subject><subject>Humans</subject><subject>Image databases</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image retrieval</subject><subject>Index Terms- Multimedia information systems</subject><subject>Indexing</subject><subject>Information retrieval</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information systems</subject><subject>Intelligence</subject><subject>NIST</subject><subject>Pattern analysis</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>performance evaluation</subject><subject>Queries</subject><subject>Recall</subject><subject>Reproducibility of Results</subject><subject>Retrieval</subject><subject>Sensitivity and Specificity</subject><subject>Size measurement</subject><subject>Subtraction Technique</subject><subject>Testing</subject><subject>Two dimensional</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9rFDEUB_Agit1Wj54ECULtadaXn5P0VoraQkUP9TxkMy_rlJnMmMxa2r_erLuw0IOeHuR9-ELel5A3DJaMgf14-_3i6_WSA6ilgGdkwaywlVDCPicLYJpXxnBzRI5zvgNgUoF4SY6Y0sYozRZkfTXe03mkfhymHmekE6YwpsFFj3Sd3PQz0y6WdZwxztXKZWxpN7g10oRz6vC368-pa1u6xojJ9d38QF1sadyG9N0j0uzHCV-RF8H1GV_v5wn58fnT7eVVdfPty_XlxU3lpWBzxSR6bzWsUKE2IrBWCM2MLc9ScfRWaAu4sq0LLEAA0E6GGizwltUShDghZ7vcKY2_NpjnZuiyx753EcdNbozVnCulZZEf_il1Laytpfgv5AYks6ALfP8E3o2bFMt3G6NrXSuwvKBqh3wac04YmimVe6aHhkGzbbT522izbbQRUPy7fehmNWB70PsKCzjdA5e960Mq1XX54LSUtoQV93bnOkQ8rEUtTQ3iD_InsLM</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Huijsmans, D.P.</creator><creator>Sebe, N.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050201</creationdate><title>How to complete performance graphs in content-based image retrieval: add generality and normalize scope</title><author>Huijsmans, D.P. ; Sebe, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-14ecc960be5e683f1d3361894ec452ec93690eb9daf1f0f006a4f70902d174033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Content based retrieval</topic><topic>content-based image retrieval</topic><topic>Databases, Factual</topic><topic>Exact sciences and technology</topic><topic>Graphs</topic><topic>Humans</topic><topic>Image databases</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image retrieval</topic><topic>Index Terms- Multimedia information systems</topic><topic>Indexing</topic><topic>Information retrieval</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information systems</topic><topic>Intelligence</topic><topic>NIST</topic><topic>Pattern analysis</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>performance evaluation</topic><topic>Queries</topic><topic>Recall</topic><topic>Reproducibility of Results</topic><topic>Retrieval</topic><topic>Sensitivity and Specificity</topic><topic>Size measurement</topic><topic>Subtraction Technique</topic><topic>Testing</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huijsmans, D.P.</creatorcontrib><creatorcontrib>Sebe, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huijsmans, D.P.</au><au>Sebe, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to complete performance graphs in content-based image retrieval: add generality and normalize scope</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2005-02-01</date><risdate>2005</risdate><volume>27</volume><issue>2</issue><spage>245</spage><epage>251</epage><pages>245-251</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>The performance of a content-based image retrieval (CBIR) system, presented in the form of precision-recall or precision-scope graphs, offers an incomplete overview of the system under study: the influence of the irrelevant items (embedding) is obscured. We propose a comprehensive and well-normalized description of the ranking performance compared to the performance of an ideal retrieval system defined by ground-truth for a large number of predefined queries. We advocate normalization with respect to relevant class size and restriction to specific normalized scope values (the number of retrieved items). We also propose new three and two-dimensional performance graphs for total recall studies in a range of embeddings.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>15688561</pmid><doi>10.1109/TPAMI.2005.30</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2005-02, Vol.27 (2), p.245-251 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_miscellaneous_67399743 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Applied sciences Artificial Intelligence Computer science control theory systems Computer Simulation Content based retrieval content-based image retrieval Databases, Factual Exact sciences and technology Graphs Humans Image databases Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image retrieval Index Terms- Multimedia information systems Indexing Information retrieval Information Storage and Retrieval - methods Information systems Intelligence NIST Pattern analysis Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry performance evaluation Queries Recall Reproducibility of Results Retrieval Sensitivity and Specificity Size measurement Subtraction Technique Testing Two dimensional |
title | How to complete performance graphs in content-based image retrieval: add generality and normalize scope |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20complete%20performance%20graphs%20in%20content-based%20image%20retrieval:%20add%20generality%20and%20normalize%20scope&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Huijsmans,%20D.P.&rft.date=2005-02-01&rft.volume=27&rft.issue=2&rft.spage=245&rft.epage=251&rft.pages=245-251&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2005.30&rft_dat=%3Cproquest_RIE%3E67399743%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867675092&rft_id=info:pmid/15688561&rft_ieee_id=1374870&rfr_iscdi=true |