How to complete performance graphs in content-based image retrieval: add generality and normalize scope

The performance of a content-based image retrieval (CBIR) system, presented in the form of precision-recall or precision-scope graphs, offers an incomplete overview of the system under study: the influence of the irrelevant items (embedding) is obscured. We propose a comprehensive and well-normalize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2005-02, Vol.27 (2), p.245-251
Hauptverfasser: Huijsmans, D.P., Sebe, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue 2
container_start_page 245
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 27
creator Huijsmans, D.P.
Sebe, N.
description The performance of a content-based image retrieval (CBIR) system, presented in the form of precision-recall or precision-scope graphs, offers an incomplete overview of the system under study: the influence of the irrelevant items (embedding) is obscured. We propose a comprehensive and well-normalized description of the ranking performance compared to the performance of an ideal retrieval system defined by ground-truth for a large number of predefined queries. We advocate normalization with respect to relevant class size and restriction to specific normalized scope values (the number of retrieved items). We also propose new three and two-dimensional performance graphs for total recall studies in a range of embeddings.
doi_str_mv 10.1109/TPAMI.2005.30
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_67399743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1374870</ieee_id><sourcerecordid>67399743</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-14ecc960be5e683f1d3361894ec452ec93690eb9daf1f0f006a4f70902d174033</originalsourceid><addsrcrecordid>eNqF0c9rFDEUB_Agit1Wj54ECULtadaXn5P0VoraQkUP9TxkMy_rlJnMmMxa2r_erLuw0IOeHuR9-ELel5A3DJaMgf14-_3i6_WSA6ilgGdkwaywlVDCPicLYJpXxnBzRI5zvgNgUoF4SY6Y0sYozRZkfTXe03mkfhymHmekE6YwpsFFj3Sd3PQz0y6WdZwxztXKZWxpN7g10oRz6vC368-pa1u6xojJ9d38QF1sadyG9N0j0uzHCV-RF8H1GV_v5wn58fnT7eVVdfPty_XlxU3lpWBzxSR6bzWsUKE2IrBWCM2MLc9ScfRWaAu4sq0LLEAA0E6GGizwltUShDghZ7vcKY2_NpjnZuiyx753EcdNbozVnCulZZEf_il1Laytpfgv5AYks6ALfP8E3o2bFMt3G6NrXSuwvKBqh3wac04YmimVe6aHhkGzbbT522izbbQRUPy7fehmNWB70PsKCzjdA5e960Mq1XX54LSUtoQV93bnOkQ8rEUtTQ3iD_InsLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>867675092</pqid></control><display><type>article</type><title>How to complete performance graphs in content-based image retrieval: add generality and normalize scope</title><source>IEEE Electronic Library (IEL)</source><creator>Huijsmans, D.P. ; Sebe, N.</creator><creatorcontrib>Huijsmans, D.P. ; Sebe, N.</creatorcontrib><description>The performance of a content-based image retrieval (CBIR) system, presented in the form of precision-recall or precision-scope graphs, offers an incomplete overview of the system under study: the influence of the irrelevant items (embedding) is obscured. We propose a comprehensive and well-normalized description of the ranking performance compared to the performance of an ideal retrieval system defined by ground-truth for a large number of predefined queries. We advocate normalization with respect to relevant class size and restriction to specific normalized scope values (the number of retrieved items). We also propose new three and two-dimensional performance graphs for total recall studies in a range of embeddings.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2005.30</identifier><identifier>PMID: 15688561</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithms ; Applied sciences ; Artificial Intelligence ; Computer science; control theory; systems ; Computer Simulation ; Content based retrieval ; content-based image retrieval ; Databases, Factual ; Exact sciences and technology ; Graphs ; Humans ; Image databases ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Image retrieval ; Index Terms- Multimedia information systems ; Indexing ; Information retrieval ; Information Storage and Retrieval - methods ; Information systems ; Intelligence ; NIST ; Pattern analysis ; Pattern Recognition, Automated - methods ; Pattern recognition. Digital image processing. Computational geometry ; performance evaluation ; Queries ; Recall ; Reproducibility of Results ; Retrieval ; Sensitivity and Specificity ; Size measurement ; Subtraction Technique ; Testing ; Two dimensional</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2005-02, Vol.27 (2), p.245-251</ispartof><rights>2005 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-14ecc960be5e683f1d3361894ec452ec93690eb9daf1f0f006a4f70902d174033</citedby><cites>FETCH-LOGICAL-c431t-14ecc960be5e683f1d3361894ec452ec93690eb9daf1f0f006a4f70902d174033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1374870$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1374870$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16449200$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15688561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huijsmans, D.P.</creatorcontrib><creatorcontrib>Sebe, N.</creatorcontrib><title>How to complete performance graphs in content-based image retrieval: add generality and normalize scope</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>The performance of a content-based image retrieval (CBIR) system, presented in the form of precision-recall or precision-scope graphs, offers an incomplete overview of the system under study: the influence of the irrelevant items (embedding) is obscured. We propose a comprehensive and well-normalized description of the ranking performance compared to the performance of an ideal retrieval system defined by ground-truth for a large number of predefined queries. We advocate normalization with respect to relevant class size and restriction to specific normalized scope values (the number of retrieved items). We also propose new three and two-dimensional performance graphs for total recall studies in a range of embeddings.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial Intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Content based retrieval</subject><subject>content-based image retrieval</subject><subject>Databases, Factual</subject><subject>Exact sciences and technology</subject><subject>Graphs</subject><subject>Humans</subject><subject>Image databases</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image retrieval</subject><subject>Index Terms- Multimedia information systems</subject><subject>Indexing</subject><subject>Information retrieval</subject><subject>Information Storage and Retrieval - methods</subject><subject>Information systems</subject><subject>Intelligence</subject><subject>NIST</subject><subject>Pattern analysis</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>performance evaluation</subject><subject>Queries</subject><subject>Recall</subject><subject>Reproducibility of Results</subject><subject>Retrieval</subject><subject>Sensitivity and Specificity</subject><subject>Size measurement</subject><subject>Subtraction Technique</subject><subject>Testing</subject><subject>Two dimensional</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqF0c9rFDEUB_Agit1Wj54ECULtadaXn5P0VoraQkUP9TxkMy_rlJnMmMxa2r_erLuw0IOeHuR9-ELel5A3DJaMgf14-_3i6_WSA6ilgGdkwaywlVDCPicLYJpXxnBzRI5zvgNgUoF4SY6Y0sYozRZkfTXe03mkfhymHmekE6YwpsFFj3Sd3PQz0y6WdZwxztXKZWxpN7g10oRz6vC368-pa1u6xojJ9d38QF1sadyG9N0j0uzHCV-RF8H1GV_v5wn58fnT7eVVdfPty_XlxU3lpWBzxSR6bzWsUKE2IrBWCM2MLc9ScfRWaAu4sq0LLEAA0E6GGizwltUShDghZ7vcKY2_NpjnZuiyx753EcdNbozVnCulZZEf_il1Laytpfgv5AYks6ALfP8E3o2bFMt3G6NrXSuwvKBqh3wac04YmimVe6aHhkGzbbT522izbbQRUPy7fehmNWB70PsKCzjdA5e960Mq1XX54LSUtoQV93bnOkQ8rEUtTQ3iD_InsLM</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Huijsmans, D.P.</creator><creator>Sebe, N.</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20050201</creationdate><title>How to complete performance graphs in content-based image retrieval: add generality and normalize scope</title><author>Huijsmans, D.P. ; Sebe, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-14ecc960be5e683f1d3361894ec452ec93690eb9daf1f0f006a4f70902d174033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial Intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Content based retrieval</topic><topic>content-based image retrieval</topic><topic>Databases, Factual</topic><topic>Exact sciences and technology</topic><topic>Graphs</topic><topic>Humans</topic><topic>Image databases</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image retrieval</topic><topic>Index Terms- Multimedia information systems</topic><topic>Indexing</topic><topic>Information retrieval</topic><topic>Information Storage and Retrieval - methods</topic><topic>Information systems</topic><topic>Intelligence</topic><topic>NIST</topic><topic>Pattern analysis</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>performance evaluation</topic><topic>Queries</topic><topic>Recall</topic><topic>Reproducibility of Results</topic><topic>Retrieval</topic><topic>Sensitivity and Specificity</topic><topic>Size measurement</topic><topic>Subtraction Technique</topic><topic>Testing</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huijsmans, D.P.</creatorcontrib><creatorcontrib>Sebe, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huijsmans, D.P.</au><au>Sebe, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to complete performance graphs in content-based image retrieval: add generality and normalize scope</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2005-02-01</date><risdate>2005</risdate><volume>27</volume><issue>2</issue><spage>245</spage><epage>251</epage><pages>245-251</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>The performance of a content-based image retrieval (CBIR) system, presented in the form of precision-recall or precision-scope graphs, offers an incomplete overview of the system under study: the influence of the irrelevant items (embedding) is obscured. We propose a comprehensive and well-normalized description of the ranking performance compared to the performance of an ideal retrieval system defined by ground-truth for a large number of predefined queries. We advocate normalization with respect to relevant class size and restriction to specific normalized scope values (the number of retrieved items). We also propose new three and two-dimensional performance graphs for total recall studies in a range of embeddings.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>15688561</pmid><doi>10.1109/TPAMI.2005.30</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2005-02, Vol.27 (2), p.245-251
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_67399743
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Artificial Intelligence
Computer science
control theory
systems
Computer Simulation
Content based retrieval
content-based image retrieval
Databases, Factual
Exact sciences and technology
Graphs
Humans
Image databases
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image retrieval
Index Terms- Multimedia information systems
Indexing
Information retrieval
Information Storage and Retrieval - methods
Information systems
Intelligence
NIST
Pattern analysis
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
performance evaluation
Queries
Recall
Reproducibility of Results
Retrieval
Sensitivity and Specificity
Size measurement
Subtraction Technique
Testing
Two dimensional
title How to complete performance graphs in content-based image retrieval: add generality and normalize scope
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A31%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20complete%20performance%20graphs%20in%20content-based%20image%20retrieval:%20add%20generality%20and%20normalize%20scope&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Huijsmans,%20D.P.&rft.date=2005-02-01&rft.volume=27&rft.issue=2&rft.spage=245&rft.epage=251&rft.pages=245-251&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2005.30&rft_dat=%3Cproquest_RIE%3E67399743%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=867675092&rft_id=info:pmid/15688561&rft_ieee_id=1374870&rfr_iscdi=true