How to complete performance graphs in content-based image retrieval: add generality and normalize scope

The performance of a content-based image retrieval (CBIR) system, presented in the form of precision-recall or precision-scope graphs, offers an incomplete overview of the system under study: the influence of the irrelevant items (embedding) is obscured. We propose a comprehensive and well-normalize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2005-02, Vol.27 (2), p.245-251
Hauptverfasser: Huijsmans, D.P., Sebe, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The performance of a content-based image retrieval (CBIR) system, presented in the form of precision-recall or precision-scope graphs, offers an incomplete overview of the system under study: the influence of the irrelevant items (embedding) is obscured. We propose a comprehensive and well-normalized description of the ranking performance compared to the performance of an ideal retrieval system defined by ground-truth for a large number of predefined queries. We advocate normalization with respect to relevant class size and restriction to specific normalized scope values (the number of retrieved items). We also propose new three and two-dimensional performance graphs for total recall studies in a range of embeddings.
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2005.30