Bcl-2 Reduced and Fas Activated by the Inhibition of Stem Cell Factor/KIT Signaling in Murine Melanocyte Precursors

Stem cell factor (SCF) and its receptor, KIT, are essential to the migration and differentiation of melanocytes during embryogenesis. We previously demonstrated that apoptosis is induced by blocking survival function of the SCF/KIT interaction in a mouse neural crest cell (NCC) primary culture. Usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of investigative dermatology 2005-01, Vol.124 (1), p.229-234
Hauptverfasser: Kimura, Satoko, Kawakami, Tamihiro, Kawa, Yoko, Soma, Yoshinao, Kushimoto, Tsuneto, Nakamura, Masayuki, Watabe, Hidenori, Ooka, Shiho, Mizoguchi, Masako
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Stem cell factor (SCF) and its receptor, KIT, are essential to the migration and differentiation of melanocytes during embryogenesis. We previously demonstrated that apoptosis is induced by blocking survival function of the SCF/KIT interaction in a mouse neural crest cell (NCC) primary culture. Using the NCCmelb4 cell line, we investigated the occurrence of apoptosis in the cultured cells when KIT receptors were blocked by the monoclonal anti-KIT antibody (ACK2). Apoptosis following treatment with ACK2 was detected by DNA fragmentation assay, in situ apoptosis detection, and electron microscopy. We noted a decrease in extracellular signal-related kinase (ERK) and ribosomal S6 kinase (RSK) protein expression following ACK2 incubation. Western blot analysis and real-time quantitative RT-PCR revealed an apparent time-dependent reduction in Bcl-2 protein levels with respect to ACK2 within the NCCmelb4 cells. In terms of Bax expression, a difference was not found. Fas and caspase8 proteins increased time-dependently in proportion to ACK2 incubation. We noted apoptotic cell death upon addition of ACK2, with evidence of possible involvement of Bcl-2 and Fas in the induction of apoptosis. In contrast, no significant correlation between Fas ligand (Fas-L) expression and ACK2 was found. Fas activation appears to occur independent of Fas-L during ACK2-induced cell death. Therefore, we propose that Fas-L expression in NCCmelb4 cells does not play a major role in facilitating apoptosis. Furthermore, we hypothesize that these molecules combined with SCF/KIT play an important role in regulating the induction of vertebrate NCC apoptosis during embryogenesis.
ISSN:0022-202X
1523-1747
DOI:10.1111/j.0022-202X.2004.23540.x