Function approximation on non-Euclidean spaces
This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation schemes are guaranteed to w...
Gespeichert in:
Veröffentlicht in: | Neural networks 2005, Vol.18 (1), p.91-102 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102 |
---|---|
container_issue | 1 |
container_start_page | 91 |
container_title | Neural networks |
container_volume | 18 |
creator | Courrieu, Pierre |
description | This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation schemes are guaranteed to work only on Euclidean metric spaces. Theoretical foundations are provided, as well as practical algorithms and illustrative examples. This tool potentially constitutes a significant extension of the common notion of ‘universal approximation capability’. |
doi_str_mv | 10.1016/j.neunet.2004.09.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67371476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608004001911</els_id><sourcerecordid>67371476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-6d991c60c093563492c219e0d0618ea64dfe0bc424c18082b9c192b77b21ffc23</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4Mobk6_gche9K31kmZp8yLIcCoMfNHnkF6vkNGls2lFv72ZHexNODgOfv_j7sfYNYeUA1f3m9TT4KlPBYBMQacA2Qmb8iLXicgLccqmUOgsUVDAhF2EsAEAVcjsnE34QkmtlJyydDV47F3r53a369pvt7V_Uyzf-uRpwMZVZP087CxSuGRntW0CXR36jH2snt6XL8n67fl1-bhOUHLdJ6rSmqMCBJ0tVCa1QME1QQWKF2SVrGqCEqWQyAsoRKmRa1HmeSl4XaPIZuxu3Btv-hwo9GbrAlLTWE_tEIzKs5zLXEVQjiB2bQgd1WbXxR-6H8PB7D2ZjRk9mb0nA9pETzF2c9g_lFuqjqGDmAjcHgAb0DZ1Zz26cOSUFAut88g9jBxFG1-OOhPQkUeqXEfYm6p1_1_yC1rihtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67371476</pqid></control><display><type>article</type><title>Function approximation on non-Euclidean spaces</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Courrieu, Pierre</creator><creatorcontrib>Courrieu, Pierre</creatorcontrib><description>This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation schemes are guaranteed to work only on Euclidean metric spaces. Theoretical foundations are provided, as well as practical algorithms and illustrative examples. This tool potentially constitutes a significant extension of the common notion of ‘universal approximation capability’.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2004.09.003</identifier><identifier>PMID: 15649664</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Feed-forward neural networks ; Function approximation ; Invariants ; Least-Squares Analysis ; Neural Networks (Computer) ; Non-metric spaces ; Pattern Recognition, Automated ; Regularization ; Space Perception - physiology ; Synapses - physiology</subject><ispartof>Neural networks, 2005, Vol.18 (1), p.91-102</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-6d991c60c093563492c219e0d0618ea64dfe0bc424c18082b9c192b77b21ffc23</citedby><cites>FETCH-LOGICAL-c419t-6d991c60c093563492c219e0d0618ea64dfe0bc424c18082b9c192b77b21ffc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2004.09.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16425997$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15649664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Courrieu, Pierre</creatorcontrib><title>Function approximation on non-Euclidean spaces</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation schemes are guaranteed to work only on Euclidean metric spaces. Theoretical foundations are provided, as well as practical algorithms and illustrative examples. This tool potentially constitutes a significant extension of the common notion of ‘universal approximation capability’.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Feed-forward neural networks</subject><subject>Function approximation</subject><subject>Invariants</subject><subject>Least-Squares Analysis</subject><subject>Neural Networks (Computer)</subject><subject>Non-metric spaces</subject><subject>Pattern Recognition, Automated</subject><subject>Regularization</subject><subject>Space Perception - physiology</subject><subject>Synapses - physiology</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kFFLwzAQx4Mobk6_gche9K31kmZp8yLIcCoMfNHnkF6vkNGls2lFv72ZHexNODgOfv_j7sfYNYeUA1f3m9TT4KlPBYBMQacA2Qmb8iLXicgLccqmUOgsUVDAhF2EsAEAVcjsnE34QkmtlJyydDV47F3r53a369pvt7V_Uyzf-uRpwMZVZP087CxSuGRntW0CXR36jH2snt6XL8n67fl1-bhOUHLdJ6rSmqMCBJ0tVCa1QME1QQWKF2SVrGqCEqWQyAsoRKmRa1HmeSl4XaPIZuxu3Btv-hwo9GbrAlLTWE_tEIzKs5zLXEVQjiB2bQgd1WbXxR-6H8PB7D2ZjRk9mb0nA9pETzF2c9g_lFuqjqGDmAjcHgAb0DZ1Zz26cOSUFAut88g9jBxFG1-OOhPQkUeqXEfYm6p1_1_yC1rihtg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Courrieu, Pierre</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2005</creationdate><title>Function approximation on non-Euclidean spaces</title><author>Courrieu, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-6d991c60c093563492c219e0d0618ea64dfe0bc424c18082b9c192b77b21ffc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Feed-forward neural networks</topic><topic>Function approximation</topic><topic>Invariants</topic><topic>Least-Squares Analysis</topic><topic>Neural Networks (Computer)</topic><topic>Non-metric spaces</topic><topic>Pattern Recognition, Automated</topic><topic>Regularization</topic><topic>Space Perception - physiology</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Courrieu, Pierre</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Courrieu, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Function approximation on non-Euclidean spaces</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2005</date><risdate>2005</risdate><volume>18</volume><issue>1</issue><spage>91</spage><epage>102</epage><pages>91-102</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation schemes are guaranteed to work only on Euclidean metric spaces. Theoretical foundations are provided, as well as practical algorithms and illustrative examples. This tool potentially constitutes a significant extension of the common notion of ‘universal approximation capability’.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>15649664</pmid><doi>10.1016/j.neunet.2004.09.003</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2005, Vol.18 (1), p.91-102 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_67371476 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Algorithms Applied sciences Artificial intelligence Computer science control theory systems Connectionism. Neural networks Exact sciences and technology Feed-forward neural networks Function approximation Invariants Least-Squares Analysis Neural Networks (Computer) Non-metric spaces Pattern Recognition, Automated Regularization Space Perception - physiology Synapses - physiology |
title | Function approximation on non-Euclidean spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Function%20approximation%20on%20non-Euclidean%20spaces&rft.jtitle=Neural%20networks&rft.au=Courrieu,%20Pierre&rft.date=2005&rft.volume=18&rft.issue=1&rft.spage=91&rft.epage=102&rft.pages=91-102&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2004.09.003&rft_dat=%3Cproquest_cross%3E67371476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67371476&rft_id=info:pmid/15649664&rft_els_id=S0893608004001911&rfr_iscdi=true |