Function approximation on non-Euclidean spaces

This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation schemes are guaranteed to w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2005, Vol.18 (1), p.91-102
1. Verfasser: Courrieu, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue 1
container_start_page 91
container_title Neural networks
container_volume 18
creator Courrieu, Pierre
description This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation schemes are guaranteed to work only on Euclidean metric spaces. Theoretical foundations are provided, as well as practical algorithms and illustrative examples. This tool potentially constitutes a significant extension of the common notion of ‘universal approximation capability’.
doi_str_mv 10.1016/j.neunet.2004.09.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_67371476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608004001911</els_id><sourcerecordid>67371476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-6d991c60c093563492c219e0d0618ea64dfe0bc424c18082b9c192b77b21ffc23</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4Mobk6_gche9K31kmZp8yLIcCoMfNHnkF6vkNGls2lFv72ZHexNODgOfv_j7sfYNYeUA1f3m9TT4KlPBYBMQacA2Qmb8iLXicgLccqmUOgsUVDAhF2EsAEAVcjsnE34QkmtlJyydDV47F3r53a369pvt7V_Uyzf-uRpwMZVZP087CxSuGRntW0CXR36jH2snt6XL8n67fl1-bhOUHLdJ6rSmqMCBJ0tVCa1QME1QQWKF2SVrGqCEqWQyAsoRKmRa1HmeSl4XaPIZuxu3Btv-hwo9GbrAlLTWE_tEIzKs5zLXEVQjiB2bQgd1WbXxR-6H8PB7D2ZjRk9mb0nA9pETzF2c9g_lFuqjqGDmAjcHgAb0DZ1Zz26cOSUFAut88g9jBxFG1-OOhPQkUeqXEfYm6p1_1_yC1rihtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67371476</pqid></control><display><type>article</type><title>Function approximation on non-Euclidean spaces</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Courrieu, Pierre</creator><creatorcontrib>Courrieu, Pierre</creatorcontrib><description>This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation schemes are guaranteed to work only on Euclidean metric spaces. Theoretical foundations are provided, as well as practical algorithms and illustrative examples. This tool potentially constitutes a significant extension of the common notion of ‘universal approximation capability’.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2004.09.003</identifier><identifier>PMID: 15649664</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Feed-forward neural networks ; Function approximation ; Invariants ; Least-Squares Analysis ; Neural Networks (Computer) ; Non-metric spaces ; Pattern Recognition, Automated ; Regularization ; Space Perception - physiology ; Synapses - physiology</subject><ispartof>Neural networks, 2005, Vol.18 (1), p.91-102</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-6d991c60c093563492c219e0d0618ea64dfe0bc424c18082b9c192b77b21ffc23</citedby><cites>FETCH-LOGICAL-c419t-6d991c60c093563492c219e0d0618ea64dfe0bc424c18082b9c192b77b21ffc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2004.09.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16425997$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15649664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Courrieu, Pierre</creatorcontrib><title>Function approximation on non-Euclidean spaces</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation schemes are guaranteed to work only on Euclidean metric spaces. Theoretical foundations are provided, as well as practical algorithms and illustrative examples. This tool potentially constitutes a significant extension of the common notion of ‘universal approximation capability’.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Feed-forward neural networks</subject><subject>Function approximation</subject><subject>Invariants</subject><subject>Least-Squares Analysis</subject><subject>Neural Networks (Computer)</subject><subject>Non-metric spaces</subject><subject>Pattern Recognition, Automated</subject><subject>Regularization</subject><subject>Space Perception - physiology</subject><subject>Synapses - physiology</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kFFLwzAQx4Mobk6_gche9K31kmZp8yLIcCoMfNHnkF6vkNGls2lFv72ZHexNODgOfv_j7sfYNYeUA1f3m9TT4KlPBYBMQacA2Qmb8iLXicgLccqmUOgsUVDAhF2EsAEAVcjsnE34QkmtlJyydDV47F3r53a369pvt7V_Uyzf-uRpwMZVZP087CxSuGRntW0CXR36jH2snt6XL8n67fl1-bhOUHLdJ6rSmqMCBJ0tVCa1QME1QQWKF2SVrGqCEqWQyAsoRKmRa1HmeSl4XaPIZuxu3Btv-hwo9GbrAlLTWE_tEIzKs5zLXEVQjiB2bQgd1WbXxR-6H8PB7D2ZjRk9mb0nA9pETzF2c9g_lFuqjqGDmAjcHgAb0DZ1Zz26cOSUFAut88g9jBxFG1-OOhPQkUeqXEfYm6p1_1_yC1rihtg</recordid><startdate>2005</startdate><enddate>2005</enddate><creator>Courrieu, Pierre</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2005</creationdate><title>Function approximation on non-Euclidean spaces</title><author>Courrieu, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-6d991c60c093563492c219e0d0618ea64dfe0bc424c18082b9c192b77b21ffc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Feed-forward neural networks</topic><topic>Function approximation</topic><topic>Invariants</topic><topic>Least-Squares Analysis</topic><topic>Neural Networks (Computer)</topic><topic>Non-metric spaces</topic><topic>Pattern Recognition, Automated</topic><topic>Regularization</topic><topic>Space Perception - physiology</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Courrieu, Pierre</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Courrieu, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Function approximation on non-Euclidean spaces</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2005</date><risdate>2005</risdate><volume>18</volume><issue>1</issue><spage>91</spage><epage>102</epage><pages>91-102</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation schemes are guaranteed to work only on Euclidean metric spaces. Theoretical foundations are provided, as well as practical algorithms and illustrative examples. This tool potentially constitutes a significant extension of the common notion of ‘universal approximation capability’.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>15649664</pmid><doi>10.1016/j.neunet.2004.09.003</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2005, Vol.18 (1), p.91-102
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_67371476
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Connectionism. Neural networks
Exact sciences and technology
Feed-forward neural networks
Function approximation
Invariants
Least-Squares Analysis
Neural Networks (Computer)
Non-metric spaces
Pattern Recognition, Automated
Regularization
Space Perception - physiology
Synapses - physiology
title Function approximation on non-Euclidean spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A55%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Function%20approximation%20on%20non-Euclidean%20spaces&rft.jtitle=Neural%20networks&rft.au=Courrieu,%20Pierre&rft.date=2005&rft.volume=18&rft.issue=1&rft.spage=91&rft.epage=102&rft.pages=91-102&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2004.09.003&rft_dat=%3Cproquest_cross%3E67371476%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67371476&rft_id=info:pmid/15649664&rft_els_id=S0893608004001911&rfr_iscdi=true