Function approximation on non-Euclidean spaces
This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation schemes are guaranteed to w...
Gespeichert in:
Veröffentlicht in: | Neural networks 2005, Vol.18 (1), p.91-102 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation schemes are guaranteed to work only on Euclidean metric spaces. Theoretical foundations are provided, as well as practical algorithms and illustrative examples. This tool potentially constitutes a significant extension of the common notion of ‘universal approximation capability’. |
---|---|
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/j.neunet.2004.09.003 |