Function approximation on non-Euclidean spaces

This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation schemes are guaranteed to w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2005, Vol.18 (1), p.91-102
1. Verfasser: Courrieu, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a family of layered feed-forward networks that is able to uniformly approximate functions on any metric space, and also on a wide variety of non-metric spaces. Non-Euclidean input spaces are frequently encountered in practice, while usual approximation schemes are guaranteed to work only on Euclidean metric spaces. Theoretical foundations are provided, as well as practical algorithms and illustrative examples. This tool potentially constitutes a significant extension of the common notion of ‘universal approximation capability’.
ISSN:0893-6080
1879-2782
DOI:10.1016/j.neunet.2004.09.003