A genome-wide view of the in vitro response to L-asparaginase in acute lymphoblastic leukemia
To investigate the effect of l-asparaginase on acute lymphoblastic leukemia (ALL), we used cDNA microarrays to obtain a genome-wide view of gene expression both at baseline and after in vitro exposure to l-asparaginase in cell lines and pediatric ALL samples. In 16 cell lines, a baseline gene expres...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2005, Vol.65 (1), p.291-299 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To investigate the effect of l-asparaginase on acute lymphoblastic leukemia (ALL), we used cDNA microarrays to obtain a genome-wide view of gene expression both at baseline and after in vitro exposure to l-asparaginase in cell lines and pediatric ALL samples. In 16 cell lines, a baseline gene expression pattern distinguished l-asparaginase sensitivity from resistance. However, for 28 pediatric ALL samples, no consistent baseline expression pattern was associated with sensitivity to l-asparaginase. In particular, baseline expression of asparagine synthetase (ASNS) was not predictive of response to l-asparaginase. After exposure to l-asparaginase, 5 cell lines and 10 clinical samples exhibited very similar changes in the expression of a large number of genes. However, the gene expression changes occurred more slowly in the clinical samples. These changes included a consistent increase in expression of tRNA synthetases and solute transporters and activating transcription factor and CCAAT/enhancer binding protein family members, a response similar to that observed with amino acid starvation. There was also a consistent decrease in many genes associated with proliferation. Taken together, the changes seem to reflect a consistent coordinated response to asparagine starvation in both cell lines and clinical samples. Importantly, in the clinical samples, increased expression of ASNS after l-asparaginase exposure was not associated with in vitro resistance to l-asparaginase, indicating that ASNS-independent mechanisms of in vitro l-asparaginase resistance are common in ALL. These results suggest that targeting particular genes involved in the response to amino acid starvation in ALL cells may provide a novel way to overcome l-asparaginase resistance. |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.291.65.1 |