Severe growth retardation and short life span of double-mutant mice lacking Xpa and exon 15 of Xpg

In addition to xeroderma pigmentosum (XP), mutations in the human XPG gene cause an early onset of Cockayne syndrome (CS) in some patients (XP-G/CS) with characteristics, such as growth retardation and a short life span. In the previous studies, we generated four Xpg mutant mice with two different C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DNA repair 2005-03, Vol.4 (3), p.351-357
Hauptverfasser: Shiomi, Naoko, Mori, Masahiko, Kito, Seiji, Harada, Yoshi-Nobu, Tanaka, Kiyoji, Shiomi, Tadahiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In addition to xeroderma pigmentosum (XP), mutations in the human XPG gene cause an early onset of Cockayne syndrome (CS) in some patients (XP-G/CS) with characteristics, such as growth retardation and a short life span. In the previous studies, we generated four Xpg mutant mice with two different C-terminal truncations, null, or a base substitution mutation to identify the protein region that causes the onset of CS, and found that the CS-causing mutations, null or a deletion of the last 360 amino acids, completely inhibited the NER activity of mouse XPG (Xpg), but the non-CS-causing mutations, XpgD811A (base substitution that eliminates the nuclease activity of Xpg) or XpgΔex15 (deletion of the exon 15 corresponding to the last 183 amino acids), resulted in the retention of residual NER activity. To understand why mutations that completely eliminate the NER activity of Xpg cause CS but those that abolish the nuclease activity without totally eliminating the NER activity of Xpg do not result in CS, we made a series of Xpg mutant mice with Xpa-null mutant allele and found that mice with the non-CS-causing deletion mutation ( XpgΔex15) exhibited the CS phenotype when XPA was also absent but the base substitution mutation ( XpgD811A) that eliminated the Xpg nuclease activity did not. These results indicate that Xpg has a second function, beside NER, and that the disruption of this second function (deletion of the last 183 amino acids) when combined with an NER defect causes CS. When we compared amino acid sequences corresponding to the exon 15 of Xpg, a significant homology was conserved among vertebrates, but not in Drosophila and Saccharomyces cerevisiae. These observations suggest that the second function of XPG may be conserved only in vertebrates and CS symptoms may occur in its absence.
ISSN:1568-7864
1568-7856
DOI:10.1016/j.dnarep.2004.10.009