Contribution of a time-dependent and hyperpolarization-activated chloride conductance to currents of resting and hypotonically shocked rat hepatocytes

Hepatocellular Cl- flux is integral to maintaining cell volume and electroneutrality in the face of the many transport and metabolic activities that describe the multifaceted functions of these cells. Although a significant volume-regulated Cl- current (VRAC) has been well described in hepatocytes,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: Gastrointestinal and liver physiology 2005-02, Vol.288 (2), p.G221-G229
Hauptverfasser: Lan, Wen-Zhi, Abbas, Houria, Lam, Hung D, Lemay, Anne-Marie, Hill, Ceredwyn E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hepatocellular Cl- flux is integral to maintaining cell volume and electroneutrality in the face of the many transport and metabolic activities that describe the multifaceted functions of these cells. Although a significant volume-regulated Cl- current (VRAC) has been well described in hepatocytes, the Cl- channels underlying the large resting anion conductance have not been identified. We used a combination of electrophysiological and molecular approaches to describe potential candidates for this conductance. Anion currents in rat hepatocytes and WIF-B and HEK293T cells were measured under patch electrode-voltage clamp. With K+-free salts of Cl- comprising the major ions externally and internally, hyperpolarizing steps between -40 and -140 mV activated a time-dependent inward current in hepatocytes. Steady-state activation was half-maximal at -63 mV and 28-38% of maximum at -30 to -45 mV, previously reported hepatocellular resting potentials. Gating was dependent on cytosolic Cl-, shifting close to 58 mV/10-fold change in Cl- concentration. Time-dependent inward Cl- currents and a ClC-2-specific RT-PCR product were also observed in WIF-B cells but not HEK293T cells. All cell types exhibited typical VRAC in response to dialysis with hypertonic solutions. DIDS (0.1 mM) inhibited the hepatocellular VRAC but not the inward time-dependent current. Antibodies against the COOH terminus of ClC-2 reacted with a protein between 90 and 100 kDa in liver plasma membranes. The results demonstrate that rat hepatocytes express a time-dependent inward Cl- channel that could provide a significant depolarizing influence in the hepatocyte.
ISSN:0193-1857
1522-1547
DOI:10.1152/ajpgi.00226.2004