Glutathione transferase-like proteins encoded in genomes of yeasts and fungi: insights into evolution of a multifunctional protein superfamily

Most fungal glutathione transferases (GSTs) do not fit easily into any of the previously characterised classes by immunological, sequence or catalytic criteria. In contrast to the paucity of studies on GSTs cloned or isolated from fungal sources, a screen of databases revealed 67 GST-like sequences...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS microbiology letters 2005, Vol.242 (1), p.1-12
Hauptverfasser: McGoldrick, Shane, O’Sullivan, Siobhàn M., Sheehan, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most fungal glutathione transferases (GSTs) do not fit easily into any of the previously characterised classes by immunological, sequence or catalytic criteria. In contrast to the paucity of studies on GSTs cloned or isolated from fungal sources, a screen of databases revealed 67 GST-like sequences from 21 fungal species. Comparison by multiple sequence alignment generated a dendrogram revealing five clusters of GST-like proteins designated clusters 1, 2, EFIBγ, Ure2p and MAK16, the last three of which have previously been related to the GST superfamily. Surprisingly, a relatively small number of fungal GSTs belong to mainstream classes and the previously-described fungal Gamma class is not widespread in the 21 species studied. Representative crystal structures are available for the EFIBγ and Ure2p classes and the domain structures of representative sequences are compared with these. In addition, there are some “orphan” sequences that do not fit into any previously-described class, but show similarity to genes implicated in fungal biosynthetic gene clusters. We suggest that GST-like sequences are widespread in fungi, participating in a wide range of functions. They probably evolved by a process similar to domain “shuffling”.
ISSN:0378-1097
1574-6968
DOI:10.1016/j.femsle.2004.10.033